检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
这里谈到了独热编码one-hot,独热编码是用来表示标签数据的。前面已经知道了,标签数据很简单,就是表示0-9范围内的一个数字。 说实话独热编码有什么用处,真的还没有理解。还有什么欧式空间的概念啊,都很陌生。 看看代码吧。 ```python #独热编码示例。 x=[3,4] tf
在1904年的时候,生物学家了解了神经元的结构然后在1945年的时候发明了神经元模型。那么这个神经元的模型真的可以模拟生物的神经功能吗,个人觉得有点奇妙,不过动物植物本来都是很奇妙的存在。所谓的全连接层,就是说某层的一个节点,和他上一层的所有节点都有连接。就像连接的边长不同,每条
问题现象描述问题现象:在C30B896版本,安装完驱动后,使用npu-smi工具查询芯片,出现文件找不到情况,如下图:根本原因分析1、/lib64/目录下缺少npu-smi工具所依赖的动态链接库。结论、解决方案及效果结论:1、 如果执行npu-smi工具,提示“No such file or
Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着ten
Pod是最小的部署单元,也是后面经常配置的地方,本章节带你熟悉Pod中常见资源配置及参数。 也就是YAML这部分: ... template: metadata: labels: app: web spec: containers: - image: lizh
复杂一些,但仍然可以很高效而精确地实现。会介绍如何用反向传播算法以及它的现代扩展算法来求得梯度。 和其他的机器学习模型一样,为了使用基于梯度的学习方法我们必须选择一个代价函数,并且我们必须选择如何表示模型的输出。现在,我们重温这些设计上的考虑,并且特别强调神经网络的情景。
HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。
infrom npu_bridge.estimator.npu.npu_config import NPURunConfigFile "/usr/local/Ascend/tfplugin/latest/tfplugin/python/site-packages/npu_bridge/init
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
背景:我们有一套蓝区1910 EVB环境,入门的安装,比如 如何安装npu-smi命令?以及如何安装升腾芯片环境?非常感谢你们能够回答下问题,嘿嘿~
说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```
mindspore npu 多卡训练自定义数据集如何给不同npu传递不同数据?是在ds.GeneratorDataset传递num_shards=num_shards, shard_id=device_id还是自定义数据集__getitem__里面用rank id取不同数据?
rnels/geop_npu.cc:297] [GEOP] Sub graph id failed, tf session is empty.2021-01-01 17:49:57.174032: E tf_adapter/kernels/geop_npu.cc:223] tf
终于进了一步,看到了MNIST手写数字识别,使用一个神经元。 MNIST数据集来自于NIST 美国国家标准和技术研究所。 找学生和工作人员手写的。 规模:训练集55000,验证集5000,测试集10000。大小约10M。 数据集可以在网站上去下载,同时tf自己里面已经集成了这个数据集。
这个房价预测的例子基本就结束了,下面是用TensorBoard来将算法,和模型训练过程的一些信息进行可视化。可视化是一件有意见的工作,有助于信息的理解和推广。可视化在modelarts的老版的训练作业下,是收费的,但这个服务在新版的训练作业里已经没有了,也行是因为这个可视化服务的
从人的角度来看,12个特征比1个特征要复杂了很多, 但对计算机来说,无所谓。 在tf里,12元的线性回归方程的实现,比1元的线性方程的实现,代码上也只是多了一点点复杂度而已。 这就是计算机的优势。 只是最后训练的结果,为什么都是nan,像老师说的,脸都黑了哦~ 这次先到这里,请听下回分解~
落了很长时间没学,捡起来继续。编号也忘了从哪里接上,就从20开始吧。 前面弄完了一元线性回归,现在是波士顿房价预测-多元线性回归。 数据方面,12+1共13个指标,506行数据。 前面12个是多个维度的数据,维度还是比较全面的,是输入值/特征。 比如:城镇人均犯罪率、师生比例、住宅比例、边界是否为河流等