检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理 指按某种策
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 图像分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
如果限时免费资源售罄,建议选择收费CPU资源进行部署。当选择收费CPU资源部署在线服务时会收取少量资源费用,具体费用以界面信息为准。 参数配置完成后,单击“下一步”,确认规格参数后,单击“提交”启动在线服务的部署。 进入“部署上线 > 在线服务”页面,等待服务状态变为“运行中”时,表示服务部署成功。单击操作列的
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例: huggingface-cli download --resume-download
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 声音分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
ModelArts是面向AI开发者的一站式开发平台,提供海量数据预处理及半自动化标注、大规模分布式训练、自动化模型生成及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。 ModelArts服务的计费方式简单、灵活,您既可以选择按实际使用时长计费,也可以选择更经济的
化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定
20.04内核自动升级? 场景描述 在Ubuntu 20.04每次内核升级后,系统需要重新启动以加载新内核。如果您已经安装了自动更新功能,则系统将自动下载和安装可用的更新,这可能导致系统在不经意间被重启,如果使用的软件依赖于特定版本的内核,那么当系统自动更新到新的内核版本时,可能
的权重转换操作和数据处理操作。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的配置,参数详解可查看训练参数说明,其中【GBS、MBS、T
i是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例: huggingface-cli download --resume-download
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
动进入JupyterLab界面,打开Terminal。 在Notebook中制作自定义镜像 首先配置鉴权信息,指定profile,根据提示输入账号、用户名及密码。鉴权更多信息请查看配置登录信息。 ma-cli configure --auth PWD -P xxx 执行env|grep
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 物体检测:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
数据校验:对您的数据集的数据进行校验,是否存在数据异常。 文本分类:将发布好的数据集版本进行训练,生成对应的模型。 模型注册:将训练后的结果注册到模型管理中。 服务部署:将生成的模型部署为在线服务。 快速查找创建好的项目 在自动学习总览页,您可以通过搜索框,根据自动学习的属性类型(项目名称)快速搜索过滤到相应的工作流,可节省您的时间。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--width ${width} \ --benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
install时,出现“No Space left...”的错误。 解决办法 建议使用pip install --no-cache ** 命令安装,而不是使用pip install **。 加上“--no-cache”参数,可以解决很多此类报错。 父主题: 实例故障
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
在详情页面单击“下载”。弹出“选择云服务区域”,选择区域后单击“确定”进入下载详情页面。根据数据集下载至OBS还是ModelArts数据集列表,填写不同配置信息: ModelArts数据管理模块在重构升级中,对未使用过数据管理的用户不可见。建议新用户选择将数据集下载至OBS使用。 将数据集下载至OBS