检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
计费FAQ 包年/包月和按需计费模式有什么区别 包年/包月和按需计费模式哪个更划算 同一资源是否同时支持包年/包月和按需计费两种模式 包年/包月和按需计费模式是否支持互相切换 资源到期了如何续费
候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。
全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。
全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。
全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。
全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。
全量升级:新旧版本服务同时运行,直至新版本完全替代旧版本。在新版本部署完成前,旧版本仍可使用。需要该服务所消耗资源的2倍,用于保障全量一次性升级。 滚动升级:部分实例资源空出用于滚动升级,逐个或逐批停止旧版本并启动新版本。滚动升级时可修改实例数。选择缩实例升级时,系统会先删除旧版本,再进行升级,期间旧版本不可使用。
部署模型 在“从资产选模型”选择所需模型。 部署方式 云上部署:算法部署至平台提供的资源池中。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒
在空间资产中。用户可以查看数据集的详细信息,包括数据格式、大小、配比比例等。同时,平台支持数据集的删除等管理操作,使用户能够统一管理数据集资源,以便在模型训练和分析时灵活调用,确保数据资产的规范性与安全性。 模型资产:平台提供的模型资产涵盖了预置或训练后发布的模型,所有这些模型将
遍历整个数据集一次。 Lora矩阵的轶 较高的取值意味着更多的参数被更新,模型具有更大的灵活性,但也需要更多的计算资源和内存。较低的取值则意味着更少的参数更新,资源消耗更少,但模型的表达能力可能受到限制。 Agent微调 在训练Agent所需的NLP大模型时,可以开启此参数。通过
部署方式 选择“云上部署”。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题: 提示词写作进阶技巧
模型可最大请求的上下文TOKEN数。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。
部署方式 选择“云上部署”。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。
单击“下一步”,选择发布格式,填写名称,选择数据集可见性,单击“下一步”。 如果评测盘古大模型, 需要在流通数据集时,将数据集格式发布为“盘古格式”。 选择“资源配置”,并单击“确定”。待任务状态为“运行成功”后,单击“启动”,生成“发布数据集”。 父主题: 评测NLP大模型
设置模型部署参数信息,平台已给出默认值。 安全护栏 选择模式 安全护栏保障模型调用安全。 选择类型 当前支持安全护栏基础版,内置了默认的内容审核规则。 资源配置 计费模式 包年包月计费模式。 实例数 设置部署模型时所需的实例数。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。
的准确性与可靠性。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或
引导模型分析:如果没有直接的示例或现有示例不适用,可以引导模型首先进行“详细分析”,然后再给出答案。这意味着在提示词中明确要求模型逐步分析问题的各个方面,帮助模型消耗更多的计算资源进行全面推理。这样,模型能够在多个推理步骤后得出更准确的结论,而不是直接跳到最终答案,减少了过度简化或跳跃推理的可能性。 分步推理与反馈:
超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。 应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面:
Rank Adaptation)微调方法通过调整模型的少量参数,以低资源实现较优结果,适合聚焦于领域通用任务或小样本数据情境。例如,在针对通用客服问答的场景中,样本量少且任务场景广泛,选择LoRA微调既能节省资源,又能获得较好的效果。 微调方式选择建议: 若项目中数据量有限或任务