检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
监控安全风险 盘古提供基于主机防护服务HSS的资源和操作监控能力,同时支持CTS审计日志,帮助用户监控自身企业账号下的管理操作。用户可以实时掌握服务使用过程中所产生的各类监控指标。 父主题: 安全
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个
单击任务名称查看模型评估任务详情。包含基本信息、评估详情、评估报告、评估日志以及数据配置。 图1 任务详情界面 任务详情: 任务详情中包含打分模式、评估资源、评估模型、任务状态以及模型描述。 图2 任务详情 评估报告: 任务状态为“已完成”时,查看评估报告。评估报告中包含困惑度、评估概览以及模型结果分析。
restart hdad 进入ModelArts服务,选择所需空间。进入“边缘资源池 > 节点”,在当前设备节点操作列单击“激活”,节点状态将从“未激活”转为“已激活”。 进入“边缘资源池 > 资源池”,单击“创建”。填写资源池名称,选择“ModelArts边缘节点”,在“主控节点”处单击“
创建评估任务 评估配置: 待评估模型:支持选择多个模型版本同时评估,最多选择5个。待评估模型必须符合前提条件。 评估资源:依据选择的模型数据自动给出所需的评估资源。 打分模式:当前版本打分模式仅支持基于规则,用户不可选,且暂无人工打分。基于规则打分:使用预置的相似度或准确率打分规
根据授权项策略,系统会自动推荐授权范围方案。例如,可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。也可以选择“指定区域项目资源”,如指定“西南-贵阳一”区域,即用户组内的IAM用户仅可使用该区域项目中的资源。 图4 设置最小授权范围 完成用户组授权。
M用户(子用户),并授权控制他们对华为云资源的访问范围。例如,对于负责软件开发的人员,您希望他们拥有接口的调用权限,但不希望他们拥有训练模型或访问训练数据的权限,那么您可以先创建一个IAM用户,并设置该用户在盘古平台中的角色,控制他们对资源的使用范围。 IAM权限 默认情况下,管
候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存起来,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。
Choices 多种选择。请求的资源可包括多个位置,相应可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See
图3 购买盘古大模型套件 对于前期邀测用户,如果未购买模型推理资产,仍可以使用公共资源池部署模型;对于购买推理资产的邀测用户,仅可以使用专属资源池部署模型。 对于新购买平台的用户,仅可购买并使用专属资源池。 父主题: 准备工作
GET:请求服务器返回指定资源。 PUT:请求服务器更新指定资源。 POST:请求服务器新增资源或执行特殊操作。 DELETE:请求服务器删除指定资源,如删除对象等。 HEAD:请求服务器资源头部。 PATCH:请求服务器更新资源的部分内容。当资源不存在的时候,PATCH可能会去创建一个新的资源。
选择需要部署的模型。 推理资源 选择非限时免费的模型时显示。选择盘古大模型服务提供的在线推理资产。 部署方式 选择“在线部署”,即将算法部署至盘古大模型服务提供的资源池中。 推理资产 选择“已购资产”。 限时免费:使用免费的推理资源,仅支持部署一个实例。 已购资产:由用户购买的推理资源,实际可用推理单元由购买时的数量决定。
为账户欠费。欠费可能会影响云服务资源的正常运行,因此需要及时充值。 模型订阅服务和推理服务为预付费,购买后不涉及欠费。 训练服务按实际消耗的Tokens数量计费,当余额不足以支付当前费用时,账户将被判定为欠费。由于盘古NLP大模型不涉及物理实体资源,因此无宽限期。欠费后继续调用服
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
更新。这种方法通常会带来最优的模型性能,但需要大量的计算资源和时间,计算开销较高。 局部微调(LoRA):在模型微调过程中,只对特定的层或模块的参数进行更新,而其余参数保持冻结状态。这种方法在很多情况下可以显著减少计算资源和时间消耗,且依旧可以保持较好的模型性能。 训练模型 选择
新建工单 获取购买权限后,根据需要选择计费模式,基模型需选择“N2 - 基础模型功能 & 应用增强功能”。用户可根据需求自行选择功能模型,输入资源名称,类型选择“边缘部署”,输入需要订购的推理算力,单击“确认订单”。 订购完成后,进入“平台管理 > 资产管理 > 模型推理资产”,可查看订购的边缘部署资产。
选择需要进行压缩的模型执行模型压缩,压缩策略为“INT8”。当压缩模型为N2基础功能模型,或是经有监督微调训练和RLHF训练后的N2模型,支持选择“低消耗模式”,减少推理资源的消耗。 图2 创建压缩任务 输入任务名称和描述,单击“立即创建”,即可下发压缩模型任务。模型压缩任务完成后,可以使用压缩后的模型进行部署操作。
通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。 自洽性 同一问题使用大模型回答多次,生成多个推理路径及答案,选择一致性最高的结果作为最终答案。 父主题: 进阶技巧
生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决与模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。 “提示词撰写” 和“提示工程”有什么区别 提示词撰写实际上是构建
实际需求。这种智能化、个性化的服务体验不仅减少了转人工的频率,还提升了用户满意度。 创意营销 在创意营销领域,企业常常需要投入大量的时间和资源来撰写吸引人的营销文案。然而,传统的人工撰写方式不仅效率低下,还受到写手个人素质的影响。盘古大模型的应用为这一问题提供了创新的解决方案。