检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
model, model(759645d9-3672-4db1-bb6d-49ed58b84e10) already deploy service.", "error_code" : "ModelArts.3009", "model_id" : "e527d311
分页列表的起始页,默认为0。 order 否 String 指定查询的排序顺序。可选值如下: asc:递增排序 desc:递减排序(默认值) search_content 否 String 模糊匹配名称,默认为空。 sort_by 否 String 指定查询的排序方式。可选值如下: cr
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。
说明: 为保证云服务器安全,未进行私钥托管的私钥只能下载一次,请妥善保管。 虚拟私有云 虚拟私有云(Virtual Private Cloud,VPC)为裸金属服务器构建隔离的、用户自主配置和管理的虚拟网络环境,提升用户云中资源的安全性,简化用户的网络部署。您可以在VPC中定义
join(the_path_of_current_file, 'infer/customize_service.py'), os.path.join(model_path, 'customize_service.py')) shutil.copyfile(os.path.joi
国际化语种的描述信息。 表14 policies 参数 参数类型 描述 auto_search auto_search object 超参搜索配置。 表15 auto_search 参数 参数类型 描述 skip_search_params String 需要排除的超参组合。 reward_attrs
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。
国际化语种的描述信息。 表64 policies 参数 参数类型 描述 auto_search auto_search object 超参搜索配置。 表65 auto_search 参数 参数类型 描述 skip_search_params String 需要排除的超参组合。 reward_attrs
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题
ModelArts使用MoXing复制报错:No files to copy socket.gaierror: [Errno -2] Name or service not known ERROR:root:Failed to call: func=<bound method ObsClient.getObject
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 在Notebook中运行以下命令下载并安装AutoAWQ源码。 git
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、使用该量化工具,需要切换conda环境。 conda activate
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、运行“examples/quantize.py”文件进行模型量化
Integer 可视化作业的运行状态,详细作业状态列表请参见作业状态参考。 create_time Long 可视化作业的创建时间,时间戳格式。 service_url String 可视化作业的endpoint。 请求示例 如下以创建名为“visualization-job”,描述为“this
"image_classification", "dataset_type" : "manifest", "source_service" : "select", "filter_func" : "data_validation_select",
允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以
允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。 dev_service String 访问Notebook的途径,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook。 SSH:可以
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x
方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x