检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
无 请求示例 如下以修改uuid为2e5451fe-913f-4492-821a-2981031382f7的算法为例。 DELETE https://endpoint/v2/{project_id}/algorithms/2e5451fe-913f-4492-821a-2981031382f7
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 无 请求示例 删除数据集 DELETE https://{endpoint}/v2/{project_id}/datasets/{dataset_id} 响应示例 状态码: 204 No
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
bert-base-chinese https://huggingface.co/google-bert/bert-base-chinese/resolve/main/pytorch_model.bin wget -P bert-base-chinese https://huggingface
$ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidi
再单击“下一步”,设置最小授权范围。单击“指定区域项目资源”,勾选待授权使用的区域,单击“确定”。 提示授权成功,查看授权信息,单击“完成”。此处的授权生效需要15-30分钟。 父主题: 配置ModelArts基本使用权限
80 使用HTTP协议访问网站。 POP3 110 使用POP3协议接受邮件。 IMAP 143 使用IMAP协议接受邮件。 HTTPS 443 使用HTTPS协议访问网站。 SQL Server 1433 SQL Server的TCP端口,用于供SQL Server对外提供服务。 SQL
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
在使用Pytorch训练时,需要将“RANK_AFTER_ACC”环境变量赋值给“NODE_RANK”,使得ranktable路由规划生效。训练启动脚本(xxxx_train.sh)示例如下。其中“MASTER_ADDR”和“NODE_RANK”必须保持该赋值。 #!/bin/bash
descriptions of existing attributes. // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387 "version": "0.2.0"
workflow_id 是 String 工作流的ID。 请求参数 无 响应参数 无 请求示例 删除Workflow工作流 DELETE https://{endpoint}/v2/{project_id}/workflows/f1642618-43eb-4ab1-a0b1-9cc584182c60
方法二:设置远端默认安装的插件 按照VS Code中设置远端默认安装的插件配置,即会在连接远端时自动安装,减少等待时间。 方法三:VS Code官网排查方式https://code.visualstudio.com/docs/remote/troubleshooting 小技巧(按需调整远端连接的相关参数):
r”已重命名为“learning_rate”,在训练代码中必须写成“learning_rate”才能调用成功。keras官方文档请参见https://github.com/keras-team/keras/releases/tag/2.3.0。 处理方法 将训练代码里的参数名称“