检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在分发待标注文件,owner/manager/labeler/reviewer可见任务列表,但任务未分配完成,无法同时再启动任务。 1:运行中。labeler/reviewer进行标注和审核工作,owner验收,如新增、同步智能标注、导入未标注文件需再次分发新增文件。 2:验收中
"/home/ma-user/work/data" # OBS数据上传至Notebook mox.file.copy_parallel(obs_data_dir, local_data_dir) # Notebook数据上传至OBS mox.file.copy_parallel(local_data_dir, obs_data_dir)
"/home/ma-user/work/data" # OBS数据上传至Notebook mox.file.copy_parallel(obs_data_dir, local_data_dir) # Notebook数据上传至OBS mox.file.copy_parallel(local_data_dir, obs_data_dir)
"/home/ma-user/work/data" # OBS数据上传至Notebook mox.file.copy_parallel(obs_data_dir, local_data_dir) # Notebook数据上传至OBS mox.file.copy_parallel(local_data_dir, obs_data_dir)
1、在容器中使用ma-user用户运行以下命令下载并安装AutoAWQ源码。 bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化
表6 Capacity 参数 参数类型 描述 value Value object 资源量。 maxValue Value object 最大弹性资源量。 timestamp String UTC时间,格式yyyy-MM-dd'T'HH:mm:ss'Z'。 window String
仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
资源规格名称,比如:modelarts.vm.gpu.t4u8。 count 是 Integer 规格保障使用量。 maxCount 是 Integer 资源规格的弹性使用量,物理池该值和count相同。 azs 否 Array of PoolNodeAz objects 资源池中节点的AZ信息。 nodePool
通过opencompass使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 #
多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。
多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。
多个,如 128 2048 128 2048,数量需和--prompt-tokens的数量对应。 --benchmark-csv:结果保存文件,如benchmark_parallel.csv。 --height: 图片长度(分辨率相关参数)。 --width: 图片宽度(分辨率相关参数)。
Kv8 Kv-cache量化,提高吞吐,支持更长序列。 高效解码 Auto-prefix-caching 前缀缓存,降低首token时延。在system prompt较长或多轮对话场景收益明显 Chunked-prefill 又名split-fuse。全量增量同时推理,提高资源利用率,提升吞吐。
创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。 说明:
创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。 说明:
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 1、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
可视化作业的具体描述。 service_url String 可视化作业的endpoint。 train_url String 可视化作业的日志存储路径。 job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询
略。 检查OBS桶是否具备权限。 下方步骤描述中所指的OBS桶,指创建自动学习项目时,指定的OBS桶,或者是创建项目时选择的数据集,其数据存储所在的OBS桶。 检查当前账号具备OBS桶的读写权限(桶ACLs) 进入OBS管理控制台,选择当前自动学习项目使用的OBS桶,单击桶名称进入概览页。
创建数据集:前往创建数据集页面创建一个新的数据集。具体操作请参考创建ModelArts数据集。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。 说明:
的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。 “训练规格” 选择自动学习训练节点所使用的资源规格,以实际界面显示为准,将会根据不同的规格计费。 说明: