检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
描述 id String 服务器资源id。 type String DevServer服务器类型。枚举值如下: BMS:裸金属服务器 ECS:弹性云服务器 HPS:超节点服务器 hps_id String 服务器所属的超节点资源id。 表4 Endpoints 参数 参数类型 描述 allowed_access_ips
资源规格名称,比如:modelarts.vm.gpu.t4u8。 count Integer 规格保障使用量。 maxCount Integer 资源规格的弹性使用量,物理池该值和count相同。 azs Array of PoolNodeAz objects 资源池中节点的AZ信息。 nodePool
硬盘限制故障 下载或读取文件报错,提示超时、无剩余空间 复制数据至容器中空间不足 Tensorflow多节点作业下载数据到/cache显示No space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device”
ServerDataVolume object 服务器数据盘信息。 server_type 否 String 服务器类型。枚举值如下: BMS:裸金属服务 ECS:弹性云服务 HPS:超节点服务 userdata 否 String 创建服务器时,用户自己定义数据。 hps_cluster_id 否 String
打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应修改重要参数表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
启动前配置。有两种方式修改配置文件: 方式一:可以参考解压出来的default_config.yaml或者deepspeed_default_config.yaml文件,再通过在启动脚本命令中增加--config_file=xxx.yaml参数来指定其为配置文件。 方式二:通过命令accelerate
OBS操作相关故障 读取文件报错,如何正确读取文件 TensorFlow-1.8作业连接OBS时反复出现提示错误 TensorFlow在OBS写入TensorBoard到达5GB时停止 保存模型时出现Unable to connect to endpoint错误 OBS复制过程中提示“BrokenPipeError:
所选择的OBS路径中。单击“添加数据”,在弹出的对话框中输入正确的数据并添加。 仅支持16bit WAV格式音频文件,单个音频文件不能超过4MB,且单次上传的音频文件总大小不能超过8MB。 数据源同步:为了快速获取用户OBS桶中最新音频,单击“数据源同步”,快速将通过OBS上传的音频数据添加到ModelArts。
th kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
其中,-C、-D、-P,-h参数属于全局可选参数。 -C表示在执行此命令时可以手动指定鉴权配置文件,默认使用~/.modelarts/ma-cli-profile.yaml配置文件; -P表示鉴权文件中的某一组鉴权信息,默认是DEFAULT; -D表示是否开启debug模式(默认关闭),
"./您的权重文件本地存储路径/.") 后续操作 自定义模型文件构建完成后,可以参考托管模型到AI Gallery将模型文件托管至AI Gallery。建议托管的模型文件列表参见表2。 表2 模型实例包含的文件 文件名称 描述 config.json 模型配置文件。 model.
Ascend训练进程通过davincirun.py文件启动,该启动文件产生的日志。 训练进程日志:用户训练代码的标准输出。 pip-requirement.txt安装日志:如果用户有定义pip-requirement.txt文件,会产生pip包安装日志。 ModelArts平台日
_DIR的目录中。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。 模型参数设置规定: TP张量并行 、PP流水线并行、CP context并行的参数设置:TP×PP×CP的值要被NPU数量(word_size)整除。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/t
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的mllm_train/tr
模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel Step1 环境准备 在节点自定义目录${node_path}下创建config.yaml文件 apiVersion:
SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。转换的Hugging
SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。转换的Hugging
模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel Step1 环境准备 在节点自定义目录${node_path}下创建config.yaml文件 apiVersion:
SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。 CONVERT_MG2HF True 表示训练完成的权重文件会自动转换为Hugging Face格式权重。若不需要自动转换,则删除该环境变量。