检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
ingFace的目录格式。即上传的HuggingFace权重文件存放目录。如果使用了量化功能,则使用量化章节转换后的权重。如果使用的是训练后模型转换为HuggingFace格式的地址,还需要有Tokenizer原始文件。 --max-num-seqs:最大同时处理的请求数,超过后在等待池等候处理。
Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
oAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
ECC错误。 通过nvidia-smi -a查询到存在Pending Page Blacklist为Yes的记录,或多比特Register File大于0。对于Ampere架构的GPU,存在以下场景: 存在不可纠正的SRAM错误。 存在Remapping Failure记录。 dmsg中存在Xid
cc0 cann_8.0.rc2 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 支持的模型列表和权重文件 本方案支持vLLM的v0.3.2版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称
本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称
在AOM控制台查看ModelArts所有监控指标 ModelArts会定期收集资源池中各节点的关键资源(GPU、NPU、CPU、Memory等)的使用情况以及开发环境、训练作业、推理服务的关键资源的使用情况,并上报到AOM,用户可直接在AOM上查看。 登录AOM控制台查看监控指标
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;