检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。若缺少则需要直接复制
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
etrain_hf中的文件与原始Hugging Face模型中的文件进行对比,查看是否缺少如tokenizers.json、tokenizer_config.json、special_tokens_map.json等tokenizer文件或者其他json文件。如果缺少则需要直接复
/v1/{project_id}/dev-servers modelarts:devserver:create ecs:serverKeypairs:createecs:*:get iam:users:getUser iam:users:listUsers iam:projects:listProjects
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch
Gallery CLI配置工具指南 安装Gallery CLI配置工具 使用Gallery CLI配置工具下载文件 使用Gallery CLI配置工具上传文件 父主题: AI Gallery(新版)
E表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 命令参数预览
d/20auto-upgrades”文件: vi /etc/apt/apt.conf.d/20auto-upgrades 将其中的“Unattended-Upgrade "1"; ”改为“Unattended-Upgrade "0";”以禁用自动更新,然后保存文件并退出。 将当前内核版本锁定。
delete_source 否 Boolean 是否删除源文件,对非文本类型数据集有效(文本类型数据集因为是导入的整个文本文件,故删除一条样本不会对源文本有影响)。可选值如下: false:不删除源文件(默认值) true:删除源文件(注意:此操作可能影响已使用这些文件的数据集版本或其他数据集,导致页面展示异常或者训练/推理异常)
th kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
th kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
th kv_cache_scales.json #输入Step2 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 父主题: 推理模型量化
推理代码中,需要通过绝对路径读取文件。模型所在的本地路径可以通过self.model_path属性获得。 当使用TensorFlow、Caffe、MXNet时,self.model_path为模型文件目录路径,读取文件示例如下: # model目录下放置label.json文件,此处读取 with
会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务。另外,当启动服务时的模型或者参数发生改变时,请删除
如图所示为8卡,pod配置成功。 图4 查看卡信息 查看卡间通信配置文件,执行以下命令。 cat /user/config/jobstart_hccl.json 多卡训练时,需要依赖“rank_table_file”做卡间通信的配置文件,该文件自动生成,pod启动之后文件地址。为“/user/config/jobstart_hccl
码和模型文件,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。 本文档也以将运行代码存放OBS为例,请参考创建OBS桶,例如桶名:standard-qwen-14b。并在该桶下创建文件夹目录用于后续存储代码使用,例如:code。
-path kv_cache_scales.json #输入2. 抽取kv-cache量化系数生成的json文件路径; 如果只测试推理功能和性能,不需要此json文件,此时scale系数默认为1,但是可能会造成精度下降。 per-tensor+per-head静态量化场景 如需
原因分析 自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装 python、python3-pip 和 Flask RUN cp