检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
0/resolve/main/sd_xl_base_1.0.safetensors。 编写Dockerfile文件。 基于官方提供的基础镜像构建自定义镜像sdxl-train:0.0.1。参考如下命令编写Dockerfile文件。镜像地址{image_url}请参见表2。 FROM {image_url} #
deLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台,选择“开发环境 > Notebook”。 打开“运行中”的Notebook实例进入JupyterLab页面,在待分享的ipynb文件右侧,单击“创建分享”按钮,弹出“发布AI
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
Torch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTor
错误的发生。 export PYTORCH_NPU_ALLOC_CONF = expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等
History页签后,下载该插件的离线安装包,如图所示。 图1 Python插件离线安装包 在本地VS Code环境中,将下载好的.vsix文件拖动到远端Notebook中。 右键单击该文件,选择Install Extension VSIX。 方法二:设置远端默认安装的插件 按照在ModelArts的Notebook中如何设置VS
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。 shm-size:共享内存大小。
模型文件目录下不能出现dockerfile文件,需要去掉模型文件目录下存在dockerfile文件。 图2 构建日志:dockerfile文件目录有问题 pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh:
当AI应用的状态变为“待启动”时,表示创建完成。 启动AI应用 上传AI应用的运行文件“app.py”。在AI应用详情页,选择“应用文件”页签,单击“添加文件”,进入上传文件页面。 运行文件的开发要求请参见准备AI应用运行文件app.py。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery
update service, rollback failed. 请联系技术支持。 正常 [model 0.0.1] OBS桶,OBS并行文件系统,SFS Turbo挂载成功。 [%s] %s volume successfully. - 服务部署和运行过程中,关键事件支持手动/自动刷新。
3仅作为示例,请以实际控制台为准。 准备训练数据和代码文件,上传到JupyterLab中。具体参见上传本地文件至JupyterLab。 图4 文件上传按钮 在左侧导航双击打开上传的代码文件,在JupyterLab中编写代码文件,并运行调试。有关JupyterLab的使用具体参见JupyterLab常用功能介绍。
本案例介绍了如何使用ModelArts Standard专属资源池提供的计算资源,结合SFS和OBS存储,在ModelArts Standard的训练环境中开展单机单卡、单机多卡、多机多卡分布式训练。 面向熟悉代码编写和调测的AI工程师,同时了解SFS和OBS云服务 从 0 制作自定义镜像并用于训练(Pytorch+CPU/GPU)
gz 解压后的数据集结果如图所示。 图5 解压后的数据集文件 Step8 下载权重文件 建议手动下载所需的权重文件,在/home/ma-user/Open-Sora-Plan1.0/目录下进行操作。 创建文件夹存放不同的权重文件。 mkdir weights mkdir weights_t5
ssion鉴权。 将自定义的推理文件和模型配置文件保存在训练生成的模型文件目录下。如训练生成的模型保存在“/home/ma-user/work/tensorflow_mlp_mnist_local_mode/train/model/”中,则推理文件“customize_service
可遵循以下步骤操作。 步骤一:资源下载 Python依赖包下载:进入 scripts/install.sh 文件中,找到需要安装的pip文件,如下列所示。直接下载pip文件,注意:下载要求的版本。 pip install numpy==1.22.0 \ t
OBS并行文件系统中。 Summary数据上传到Notebook路径/home/ma-user/work/下的方式,请参见上传本地文件至JupyterLab。 Summary数据如果是通过OBS并行文件系统挂载到Notebook中,请将模型训练时产生的Summary文件先上传到O
大限制4096G。 category String 支持的存储类型。不同存储类型的差异,详见开发环境中如何选择存储。枚举值如下: SFS:弹性文件服务 EVS:云硬盘 mount_path String 存储挂载至Notebook实例的目录,当前固定在/home/ma-user/work/下。
大限制4096G。 category String 支持的存储类型。不同存储类型的差异,详见开发环境中如何选择存储。枚举值如下: SFS:弹性文件服务 EVS:云硬盘 mount_path String 存储挂载至Notebook实例的目录,当前固定在/home/ma-user/work/下。