检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练业务迁移到昇腾设备场景介绍 场景介绍 本文介绍如何将客户已有的PyTorch训练业务迁移到昇腾设备上运行并获得较好的模型训练效果。华为云ModelArts针对该场景提供了系统化的迁移指导,包括迁移原理、迁移流程以及迁移后的精度调试及性能调优方法介绍。此外,ModelArts提
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
Step3 为用户配置ModelArts的委托访问授权 配置完IAM权限之后,需要在ModelArts页面为子账号设置ModelArts访问授权,允许ModelArts访问OBS、SWR、IEF等依赖服务。 此方式只允许主用户为子账号进行配置。因此,本示例中,管理员账号需为所有用户完成访问授权的配置。
当前固定随机性操作可分为工具固定和人工固定两种。 工具固定Seed 对于网络中随机性的固定,msprobe提供了固定Seed的方式,只需要在config.json文件中添加对应seed配置即可。 msprobe工具提供了seed_all接口用于固定网络中的随机数。如果客户使用了工具但取用了其他随机种子,则必须使用客户的随机种子固定随机性。
授权API至APP 功能介绍 将指定的API授权给APP。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以
配置ModelArts委托权限 给用户配置ModelArts委托授权,允许ModelArts服务在运行时访问OBS等依赖服务。 使用华为云账号登录ModelArts管理控制台,在左侧导航栏单击“权限管理”,进入“权限管理”页面,单击“添加授权”。 在弹出的“添加授权”窗口中,选择:
更新API授权 功能介绍 更新API的授权关系。API的认证方式必须为APP认证,APP的创建用户必须是API所属服务的创建者,且请求用户对API所属服务必须有更新权限。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成S
资源规格名称,比如:modelarts.vm.gpu.tnt004。 count Integer 规格保障使用量。 maxCount Integer 资源规格的弹性使用量,物理池该值和count相同。 azs Array of azs objects 资源所在的AZ的数量。 nodePool String
策略及授权项说明 如果您需要对您所拥有的ModelArts进行精细的权限管理,您可以使用统一身份认证服务(Identity and Access Management,简称IAM),如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用ModelArts服务的其它功能。
不允许子账号使用公共资源池创建作业 本章节介绍如何控制ModelArts用户权限,限制用户使用ModelArts公共资源池的资源创建训练作业、创建开发环境实例,部署推理服务等。 场景介绍 对于ModelArts专属资源池的用户,不允许使用公共资源池创建训练作业、创建Noteboo
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
资源规格名称,比如:modelarts.vm.gpu.tnt004。 count Integer 规格保障使用量。 maxCount Integer 资源规格的弹性使用量,物理池该值和count相同。 azs Array of azs objects 资源所在的AZ的数量。 nodePool String
各模型支持的最小卡数和最大序列 基于vLLM(v0.6.3)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服