检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
str四种类型 ] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url"
服务 在llm_inference/ascend_vllm/目录下通OpenAI服务API接口启动服务,具体操作命令如下,可以根据参数说明修改配置。 (1)非多模态 python -m vllm.entrypoints.openai.api_server --model ${container_model_path}
团队标注成员任务状态。可选值如下: 6:已创建。 0:启动中。 1:运行中。 2:验收中。 3:通过,即团队标注任务已完成。 4:驳回,即需要重新修改标注和审核工作。 update_time Long 团队标注成员任务更新时间。 worker_id String 团队标注成员ID。 workforce_task_name
方式一:图形界面的软件获取服务的IP和端口号 图6 接口返回示例 方式二:Python语言获取IP和端口号 Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 service_id:服务ID,在服务详情页可查看。 REGI
exec(check_program, exec_globals) #第58行 执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port}
exec(check_program, exec_globals) #第58行 执行精度测试启动脚本opencompass.sh,具体操作命令如下,可以根据参数说明修改参数。请确保${work_dir} 已经通过export设置。 vllm_path=${vllm_path} \ service_port=${service_port}
zip上传到${workdir}目录下并解压缩,如SFS Turbo的路径:/mnt/sfs_turbo目录下,以下都以/mnt/sfs_turbo为例,请根据实际修改。 unzip AscendCloud-*.zip 上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tokeni
该参数为本地IDE项目和Notebook对应的同步目录,默认为/home/ma-user/work/project名称,可根据自己实际情况更改。 单击“Apply”,配置完成后,重启IDE生效。 重启后初次进行update python interpreter需要耗费20分钟左右。
边缘服务状态异常,异常信息:实例不存在 Update service status to abnormal, deployment is not exist. 请修改实例后重试。 正常 实例在当前边缘节点状态为xxx,相关信息:xxx Instance is %s in node(%s), %s - 正常
头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 如果您的原始表格中没有表头,需关闭“导入是否包含表头”开关,从OBS选择数据后,Schema信息的列名默认为表格中的第一行数据,请更改Schema信息中的“列名”为attr_1、attr_2、……
否 String 根据样本名称搜索(含后缀名)。 sample_time 否 String 样本加入到数据集时,会根据样本在OBS上的最后修改时间(精确到天)建立索引,此处可以根据此时间进行搜索。可选值如下: month:搜索往前30天至今天内添加的样本 day:搜索昨天(往前1天)至今天内添加的样本
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到
json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是id、url、title和text。可以指定–json-key 标志来选择用于训练的列。
X.git cd YOLOX git checkout 4f8f1d79c8b8e530495b5f183280bab99869e845 修改“requirements.txt”中的onnx版本,改为“onnx>=1.12.0”。 将“yolox/data/datasets/coco
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。
ReadOnlyAccess权限。 在ModelArts管理控制台,单击“权限管理 ”,在对应委托的操作列,单击“查看权限 > 去IAM修改委托权限”。 在新页面中,单击“授权记录 > 授权”,搜索“IAM ReadOnlyAccess”,勾选后单击“下一步”并单击“确认”。 验证权限是否配置成功。
边缘服务状态异常,异常信息:实例不存在 Update service status to abnormal, deployment is not exist. 请修改实例后重试。 正常 实例在当前边缘节点状态为xxx,相关信息:xxx Instance is %s in node(%s), %s - 正常
该指令无法完全模拟线上,主要是由于-v挂载进去的目录是root权限。在线上,模型文件从OBS下载到/home/mind/model目录之后,文件owner将统一修改为ma-user。 在本地机器上启动另一个终端,执行以下验证指令,得到符合预期的推理结果。 curl https://127.0.0.1:8080/${推理服务的请求路径}
myhuaweicloud.com/pypi/web/simple --trusted-host mirrors.myhuaweicloud.com 修改测试代码,注释掉以下文件的断言所在行。 vim /workspace/Megatron-DeepSpeed/megatron/model/fused_softmax
即可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以llama2为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值。在Notebook进入到