检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
{image_url}参见表2。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。训练至少需要单机8卡,推理需要单机单卡。 export work_dir="自定义挂载的工作目录" export
在ascend_vllm目录下通过vLLM服务API接口启动服务,具体操作命令如下,API Server的命令相关参数说明如下,可以根据参数说明修改配置。 python -m vllm.entrypoints.api_server --model ${model_path} \ --max-num-seqs=256
即可 用户自定义执行数据处理脚本修改参数说明 若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
可 用户自定义执行数据处理脚本修改参数说明 如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。 方法一:用户可打开scripts/llama2/1_preprocess_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home
侧随机性无法通过seed等自动化方式固定,先通过切换CPU侧计算初始化之后再切回device侧。在train.py中做如下图第215行代码修改。 重新训练Dump比对分析后续计算是否存在偏差。比对之后发现:Tensor.__mul__.2在forward计算阶段的第一个input存在偏差。
# 推理代码包 |──llm_tools # 推理工具 下载代码之后需要修改llm_train/AscendSpeed/scripts/install.sh文件。具体为删除install.sh的第43行 "git cherrypick
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m
ProcessorDataSource objects 数据处理任务的输入通道。 modified_sample_count Integer 处理后修改的图片数量。 origin_sample_count Integer 处理前的图片数量。 status Integer 数据处理任务的状态。可选值如下:
-p | grep net.ipv4.ip_forward 步骤二:启动镜像 启动容器镜像,推理只需要启动单卡,启动前可以根据实际需要增加修改参数。 export work_dir="自定义挂载的工作目录" export container_work_dir="自定义挂载到容器内的工作目录"
要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 SEED 1234 随机种子数。每次数据采样时,保持一致。
语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip}
式远程连接其他用户的Notebook实例,需要将SSH密钥对更新成自己的,否则会报错ModelArts.6786。更新密钥对具体操作请参见修改Notebook SSH远程连接配置。具体的错误信息提示:ModelArts.6789: 在ECS密钥对管理中找不到指定的ssh密钥对xxx,请更新密钥对并重试。
383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto
面通过委托token突破限制。 在统一身份认证服务页面的左侧导航中选择委托,找到该用户组在ModelArts上使用的委托名称,单击右侧的“修改”操作,选择“授权记录”页签,单击“授权”,选中上一步创建的自定义策略“不允许用户使用公共资源池”,单击“下一步”,选择允许使用的资源区域,单击“确定”。
383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto
383bbd54bc621086e05aa1b030d8d4d5635b25e6 pip install -e . 执行如下精度测试命令,可以根据参数说明修改参数。 lm_eval --model vllm --model_args pretrained=${vllm_path},dtype=auto
户将原来代码中CUDA相关的内容迁移到NPU相关的接口上,包含算子API、显存操作、数据集操作、分布式训练的参数面通信nccl等,手动操作修改点较多且较为分散,因此昇腾提供了自动迁移工具transfer_to_npu帮助用户快速迁移。 自动迁移的原理是:通过注入的方式将当前Python运行环境中,运行时的torch
mage_url}参见获取镜像。 docker pull {image_url} 启动容器镜像。启动前请先按照参数说明修改${}中的参数。可以根据实际需要增加修改参数。推理默认使用单机单卡。 docker run -itd --net=host \ --device=/dev/davinci0
要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。 TRAIN_ITERS 100 表示训练step迭代次数,根据实际需要修改。 SAVE_INTERVAL 1000 用于模型中间版本地保存。 当参数值>=TRAIN_ITERS时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。
_url}获取请参见表1。 docker pull {image_url} 步骤三:启动容器镜像 启动容器镜像,启动前可以根据实际需要增加修改参数。 docker run -itd --net=host \ --device=/dev/davinci0 \ --device=/dev/davinci1