检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 1、 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e
yaml相对或绝对路径,此配置文件为训练最优配置参数。 --baseline <baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"
cron表达式需要使用linux系统下支持的格式,其他的cron表达式会报错。表达式可能会包含问号,要兼容linux的cron表达式,需将“?”替换为“*”。 设置定时任务后,修改文件名称以及文件内容,已经创建好的任务不受影响。 立即运行后,在Notebook Jobs页签可以看到任务运行记录,右上角Reload刷新。
在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图3 复制登录指令 Step6 修改并上传镜像 1. 登录指令输入之后,使用下列示例命令: docker tag {image_url} <镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称>
在SWR中单击右上角的“登录指令”,然后在跳出的登录指定窗口,单击复制临时登录指令。在创建的ECS中粘贴临时登录指令,即可完成登录。 图3 复制登录指令 Step6 修改并上传镜像 1. 登录指令输入之后,使用下列示例命令: docker tag {image_url} <镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称>
requirements.txt 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host 127.0.0.1 --port
示例值 参数说明 MOUNT OBS 表示代码根据OBS存储方式运行。 MODEL_NAME llama2-70b 对应模型名称。请根据实际修改。 FINETUNING_TYPE lora 表示表示训练策略。可选择值: full:全参微调 lora:lora微调 CODE_DIR
gpu_memory_utilization。如果还是 oom,建议适当往下调整。 最后,如果执行报错提示oom,建议修改数据集的shot配置。例如mmlu,可以修改文件 opencompass/configs/datasets/mmlu/mmlu_ppl_ac766d.py 中的
parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url"
部署:将模型发布为在线服务、批量服务或边缘服务。 创建新版本:创建新的模型版本。参数配置除版本外,将默认选择上一个版本的配置信息,您可以对参数配置进行修改。 删除:删除对应的模型。 说明: 如果模型的版本已经部署服务,需先删除关联的服务后再执行删除操作。模型删除后不可恢复,请谨慎操作。 单击
parameters=[] ), # 训练使用的算法对象,示例中使用AIGallery订阅的算法;部分算法超参的值如果无需修改,则在parameters字段中可以不填写,系统自动填充相关超参值 inputs=wf.steps.JobInput(name="data_url"
home/ma-user/ws目录下,以下都以/home/ma-user/ws为例,请根据实际修改。 unzip AscendCloud-3rdLLM-*.zip 上传代码之后需要修改llm_train/AscendSpeed/scripts/install.sh文件。具体为删除install
容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m
容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m
例如下: 图1 抽取kv-cache量化系数 注意: 1、抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 2、当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e
json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m
k_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port
k_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port
k_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port
容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当前社区vllm只支持float8的kv_cache量化,抽取脚本中dtype类型是"float8_e4m