检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从Manifest文件导入规范说明 Manifest文件中定义了标注对象和标注内容的对应关系。此导入方式是指导入数据集时,使用Manifest文件。选择导入Manifest文件时,可以从OBS导入。当从OBS导入Manifest文件时,需确保当前用户具备Manifest文件所在OBS
创建并完成图像分类的智能标注任务 本节通过调用一系列API,以创建并完成智能标注任务为例介绍ModelArts API的使用流程。 概述 创建智能标注任务的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调用启动智能任务接口给图像分类的数据集创建一个智能标注任务
查看在线服务详情 当模型部署为在线服务成功后,您可以进入“在线服务”页面,来查看服务详情。 登录ModelArts管理控制台,在左侧菜单栏中选择“模型部署 > 在线服务”,进入“在线服务”管理页面。 单击目标服务名称,进入服务详情页面。 您可以查看服务的“名称”、“状态”等信息,详情说明请参见表
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/JupyterLab
基于ModelArts performance advisor插件的昇腾PyTorch性能调优步骤 基于ModelArts performance advisor插件的昇腾PyTorch性能调优主要分为以下步骤: 准确采集性能劣化时刻的profiling数据。 存储profiling
资源购买 购买弹性文件服务SFS 弹性文件服务默认为按需计费,即按购买的存储容量和时长收费。您也可以购买包年包月套餐,提前规划资源的使用额度和时长。在欠费时,您需要及时(15天之内)续费以避免您的文件系统资源被清空。SFS购买指导请参考如何购买弹性文件服务?。 购买容器镜像服务SWR
下载数据 在AI Gallery中,您可以下载满足业务需要的数据集。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据。 下载数据集 登录“AI Gallery”。 选择“资产集市 > 数据集”,进入数据页面,该页面展示了所有共享的数据集。 搜索业务所需的数据集,请参见查找和收藏资产
准备MaaS资源 在使用MaaS服务时,需要先完成OBS桶、资源池等准备工作。 准备OBS桶 在ModelArts Studio大模型即服务平台创建自定义模型、调优或压缩模型时,需要在对象存储服务OBS中创建OBS桶,用于存放模型权重文件、训练数据集或者是存放永久保存的日志。 创建
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-3rdLLM-905-xxx.zip 说明: 软件包名称中的
从OBS中导入模型文件创建模型 针对使用常用框架完成模型开发和训练的场景,可以将您的模型导入至ModelArts中,创建为模型,并进行统一管理。 约束与限制 针对创建模型的模型,需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求,详细说明请参见模型包结构介绍
使用ModelArts Standard自定义算法实现手写数字识别 本文为用户提供如何将本地的自定义算法通过简单的代码适配,实现在ModelArts上进行模型训练与部署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST
LLM大语言模型训练推理 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例
将AI Gallery中的模型部署为AI应用 AI Gallery支持将模型部署为AI应用,在线共享给其他用户使用。 前提条件 选择的模型必须是支持部署为AI应用的模型,否则模型详情页没有“部署 > AI应用”选项。 部署AI应用 登录AI Gallery。 单击“模型”进入模型列表
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,
推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,
发布Notebook 在AI Gallery中,您可以将个人开发的Notebook代码免费分享给他人使用。 前提条件 在ModelArts的Notebook或者CodeLab中已创建好ipynb文件,开发指导可参见开发工具。 发布Notebook 登录ModelArts管理控制台。
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install