检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
确保ECS绑定了弹性公网IP,且对应配置正确(入方向放开TCP协议的3000端口,出方向全部放通)。设置如下: 单击ECS服务器名称进入详情页,单击“安全组”页签,单击“配置规则”。 单击“入方向规则”,入方向放开TCP协议的3000端口,出方向默认全部放通。 在浏览器中输入“http://{弹性公网I
20.04操作系统默认已经安装IB驱动。) 操作步骤 方法1:使用mlx硬件计数器,估算ROCE网卡收发流量 统计300s内流量,统计脚本如下: x=$(cat /sys/class/infiniband/mlx5_2/ports/1/counters/port_rcv_data)
例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量或增量推理实例启动的--port参数相关。--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_tab
例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量或增量推理实例启动的--port参数相关。--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_tab
k_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer
k_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer
k_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer
k_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer
k_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip} \ --port ${port} \ --tokenizer /path/to/tokenizer
使用的推理接口是vllm。 --host:服务部署的IP。 --port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1
rallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer
<baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。 查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格:
例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量或增量推理实例启动的--port参数相关。--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(`--port`)启动服务,并按照global rank_t
<baseline>:<可选>GP-Ant8机器性能基线yaml文件路径,用户可自行修改,不填则使用工具自带基线配置,默认基线配置样例如下: --o <output_dir>: <可选>任务完成输出excel表格路径,默认为"./"当前所在路径。 查看性能结果 任务完成之后会在test-benchmark目录下生成excel表格:
0.0.0:29500 (errno: 98 - Address already in use).”。 原因:训练作业的端口号有冲突。 处理建议:更改代码中的端口号,重启训练作业。 查看训练作业的“日志”,出现报错“WARNING: root: Retry=7, Wait=0.4,
${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokenizer路径,HuggingFace的权重路径。 --epochs:测试轮数,默认取值为5 --parallel-num:每轮并发数,支持多个,如 1
像中相同的启动命令。 提供的服务可使用HTTPS/HTTP协议和监听的容器端口,使用的协议和端口号请根据模型实际定义的推理接口进行配置。HTTPS协议的示例可参考https示例。 (可选)服务对外提供的端口,提供URL路径为“/health”的健康检查服务(健康检查的URL路径必须为“/health”)。
在BMS页面打开Grafana所在节点的安全组配置,添加入方向规则,允许外部访问3000、9090端口: 在浏览器地址栏输入xx.xx.xx.xx:3000,登录Grafana,默认账号密码为:admin/admin。在配置管理页面,添加数据源,类型选择Prometheus。 备注:xx
bash -x opencompass.sh 参数说明: vllm_path:构造vllm评测配置脚本名字,默认为vllm。 service_port:服务端口,与启动服务时的端口保持,比如8080。 max_out_len:在运行类似mmlu、ceval等判别式回答时,max_ou
例、增量推理实例的信息交互。该参数入参为形如{port1},{port2},{portn}的字符串,与全量或增量推理实例启动的--port参数相关。--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(`--port`)启动服务,并按照global rank_t