检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图1 项目隔离模型 企业项目 企业项目是项目的升级版,针对企业不同项目间资源的分组和管理,是逻辑隔离。企业项目中可以包含多个区域的资源,且项目中的资源可以迁入迁出。 关于企业项目ID的获取及企业项目特性的详细信息,请参见《企业管理服务用户指南》。 父主题: 使用前必读
Engine Service,简称GES),是国内首个商用的、拥有自主知识产权的国产分布式原生图引擎,是针对以“关系”为基础的“图”结构数据,进行查询、分析的服务。广泛应用于社交应用、企业关系分析、风控、推荐、舆情、防欺诈等具有丰富关系数据的场景。 本文档能够帮助您快速了解和使用图引擎服务,基本使用流程如下:
根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1.0/{
升级到的版本,必须大于当前图版本。 forceUpgrade 否 Boolean 是否强制升级。取值为true或false,默认为false。 true:强制升级,会中断升级时已经在处理的任务,比如运行算法长任务,可能会造成少量请求失败。 false:非强制升级,会等待已经运行的业务,升级过程可能较慢。
Integer 本次请求的起始位置,默认为0。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。
louvain算法(louvain) 功能介绍 根据输入参数,执行Louvain算法。 Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。 URI POST /ges/v1.0/{project_id}/hyg
删除过滤后的边(2.2.7) 功能介绍 删除满足过滤条件的边集合。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/edges/action?action_id=delete 请求参数 表1 Body参数说明 参数 是否必选
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_name 是 String 图名称。 请求参数 表2 Body参数说明 参数 是否必选 类型 说明 vertex 是 String 点名称。 label 是 String 点的label,若没有则置为“__DEFAULT__”。
PREFIX 是 是 是 否 FUZZY 是 是 是 否 REGEX 是 是 是 否 SUBSTRING 是 是 是 否 CISUBSTRING 是 是 是 否 =/!=/</<=/>/>= 是 是 是 否 支持左值是集合:body体中左值为string。 支持右值是集合:选择否,
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id}/
true:强制升级,会中断升级时已经在处理的任务,比如运行算法长任务,可能会造成少量请求失败。 false:非强制升级,会等待已经运行的业务,升级过程可能较慢。 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型 描述 job_id String 执行该异步任务的jobId。 说明:
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_name 是 String 图名称。 请求示例 执行指定算法,算法名字为pagerank,算法的权重系数为0.85,收敛精度为0.00001,最大迭代次数为1000,考虑边的方向。 POST
project_id 是 String 项目ID。获取方法请参见获取项目ID。 graph_name 是 String 图名称。 请求示例 执行指定算法,算法名字为pagerank,算法的权重系数为0.85,收敛精度为0.00001,最大迭代次数为1000,考虑边的方向。 POST
说明 directed 否 Boolean 是否考虑边的方向。取值为true或false,默认值为false。 weight 否 String 边上权重。取值为:空或字符串。 空:边上的权重、距离默认为1。 字符串:对应的边上的属性将作为权重,当某边没有对应属性时,权重将默认为1。
查询图版本(2.0.0) 功能介绍 查询图的版本信息。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/version 表1 URI参数说明 参数 是否必选 类型 说明 project_id 是 String 项目ID。获取方法请参见获取项目ID。
String 备份关联的图ID。 graph_name String 备份关联的图Name。 graphStatus String 备份关联的图状态。 graphSizeTypeIndex String 备份关联的图规格。 dataStoreVersion String 备份关联的图版本。 arch
List 各label与关联的property字段定义。 请求示例 查询图的元数据详情。 GET http://{SERVER_URL}/ges/v1.0/{project_id}/graphs/{graph_name}/schema SERVER_URL:图的访问地址,取值请参考业务面API使用限制。