检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU服务器上配置Lite Server资源软件环境 场景描述 本文旨在指导如何在GPU裸金属服务器上,安装NVIDIA、CUDA驱动等环境配置。由于不同GPU预置镜像中预安装的软件不同,您通过Lite Server算力资源和镜像版本配套关系章节查看已安装的软件。下面为常见的软件
服务管理 通过patch操作对服务进行更新 查询服务监控信息 查询服务列表 部署服务 查询支持的服务部署规格 查询服务详情 更新服务配置 删除服务 更新模型服务的单个属性 查询专属资源池列表 查询服务事件日志 启动停止边缘节点服务实例 查询服务更新日志 添加资源标签 删除资源标签
CodeLab首页 常用功能。 CodeLab的界面依托于JupyterLab,其相关的常见功能与JupyterLab相同。 常用操作指导可参见JupyterLab操作指导:JupyterLab常用功能介绍。 由于CodeLab的存储为系统默认路径,在使用“上传文件”或“下载文件至本地”时
上传算法至SFS 下载Swin-Transformer代码。 git clone --recursive https://github.com/microsoft/Swin-Transformer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。
message: %s 请根据错误信息定位和处理问题。 正常 更新服务失败,执行回滚操作成功。 Failed to update service, rollback succeeded. - 异常 更新服务失败,执行回滚操作失败。 Failed to update service, rollback
W4A16量化 大模型推理中,模型权重数据类型(weight),推理计算时的数据类型(activation)和kvcache一般使用半精度浮点FP16或BF16。量化指将高比特的浮点转换为更低比特的数据类型的过程。例如int4、int8等。 模型量化分为weight-only量化
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
gface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录${node_path}下创建config.yaml文件
gface格式。开源权重文件获取地址请参见支持的模型列表和权重文件。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 Step2 配置pod 在节点自定义目录${node_path}下创建config.yaml文件
task_statuses Array of TaskStatuses objects 训练在子任务状态信息。 running_records Array of RunningRecord objects 训练作业运行及故障恢复记录。 表5 TaskStatuses 参数 参数类型
可以让Workflow列表页中的内容在显示时自动换行。禁用此功能可截断文本,Workflow列表页中仅显示部分内容。 操作列:默认为开启状态,启用此能力可让操作列固定在最后一列永久可见。 自定义显示列:默认所有显示项全部勾选,您可以根据实际需要定义您的显示列。 设置完成后,单击“确定”即可。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
式要求为Huggingface格式。开源权重文件获取地址请参见表3。 如果使用模型训练后的权重文件进行推理,模型训练及训练后的权重文件转换操作可以参考相关文档章节中提供的模型训练文档。 3.权重要求放在磁盘的指定目录,并做目录大小检查,参考命令如下: df -h 步骤四 制作推理镜像
llama3.2-3b https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite Server运行的,需要购买并开通Server资源。
message: %s 请根据错误信息定位和处理问题。 正常 更新服务失败,执行回滚操作成功。 Failed to update service, rollback succeeded. - 异常 更新服务失败,执行回滚操作失败。 Failed to update service, rollback
训练的权重转换说明 以llama2-13b举例,使用训练作业运行obs_pipeline.sh脚本后,脚本自动执行权重转换,并检查是否已经完成权重转换的过程。 如果已完成权重转换,则直接执行训练任务。如果未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
llama3.2-3b https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite Server运行的,需要购买并开通Server资源。
预测”即可看到预测结果。 图9 预测-openai 在线服务的更多内容介绍请参见文档查看服务详情。 Step5 推理性能测试 推理性能测试操作请参见推理性能测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。