检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
peline_onnx_stable_diffusion_img2img.py”,其中${diffusers}表示diffusers包的安装路径,可以通过pip进行查看。 # shell pip show diffusers 修改代码依赖 新建并进入/home_host/work/pipeline目录。
zip 大模型推理框架代码包 AscendCloud-OPP-6.3.905-20240611170314.zip 算子依赖包 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-3rdLLM 支持如下模型适配PyTorch-NPU的训练。
DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明 参数名称 说明 “创建方式” 选择“自定义算法”。 “启动方式” 选择“自定义”。 “镜像” 选择用于训练的自定义镜像。
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 执行如下命令,查看训练环境的cuda版本,确认当前cuda版本是否支持so文件。 os.system("cat /usr/local/cuda/version
ma-cli)" 此外,可以通过“ma-cli auto-completion Fish”或“ma-cli auto-completion Fish”命令查看“Zsh”、“Fish”中的自动补全命令。 命令概览 $ ma-cli auto-completion -h Usage: ma-cli auto-completion
面,单击“重试”。在重试之前您也可以前往权限管理页面修改配置,节点重试启动后新修改的配置信息可以在当前执行中立即生效。 停止 单击指定节点查看详情,可以对运行中的节点进行停止操作。 继续运行 对于单个节点中设置了需要运行中配置的参数时,节点运行会处于“等待操作”状态,用户完成相关
ModelArts入门实践 本章节列举了一些常用的实践案例,方便您快速了解并使用ModelArts完成AI开发。 表1 常用最佳实践 分类 实践案例 描述 适用人群 ModelArts Standard模型训练 基于ModelArts Standard上运行GPU训练任务 本案例介绍了如何使用ModelArts
led:如果不需要开启安全认证,这2个参数取值需要修改为false。 multiNodesInferEnabled:取值需要修改true,表示开启多机推理。 modelName:设置为DeepSeek-V3或DeepSeek-R1。 modelWeightPath:权重文件在容器
PyTorch模型获取模型shape,主要有如下两种方式获取: 方式一:通过stable diffusion的PyTorch模型获取模型shape。 方式二:通过查看ModelArts-Ascend代码仓库,根据每个模型的configs文件获取已知的shape大小。 下文主要介绍如何通过方式一获取模型shape。
获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练。
h size、并行切分策略、学习率warm-up、模型参数、FA配置等。用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。 表1 超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的
获取。 ModelArts针对多种引擎提供了样例及其示例代码,您可以参考样例编写您的配置文件和推理代码,详情请参见ModelArts样例列表。ModelArts也提供了常用AI引擎对应的自定义脚本示例,请参见自定义脚本代码示例。 如果您在导入元模型过程中遇到问题,可联系华为云技术支持协助解决故障。
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN)
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN)
obs_data_dir) 模型推荐的参数与NPU卡数设置 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 训练策略类型 文本序列长度(SEQ_LEN)
&& \ chmod 770 /root && \ usermod -a -G root ma-user 其他现象,可以在已有的训练故障案例查找。 建议与总结 用户使用自定义镜像训练作业时,建议按照训练作业自定义镜像规范制作镜像。文档中同时提供了端到端的示例供用户参考。 父主题: 训练作业运行失败
yaml创建pod。 kubectl apply -f config.yaml 检查pod启动情况,执行下述命令。如果显示“1/1 running”状态代表启动成功。 kubectl get pod -A 进入容器,{pod_name}替换为您的pod名字(get pod中显示的名字),{nam
获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练(ModelLink)
Ascend/driver目录。 X86 CPU架构和ARM CPU架构的自定义镜像分别只能运行于对应CPU架构的规格中。 执行如下命令,查看自定义镜像的CPU架构。 docker inspect {自定义镜像地址} | grep Architecture ARM CPU架构的自定义镜像,上述命令回显如下。
获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的特性 表1 本版本支持的特性说明 分类 软件包特性说明 参考文档 三方大模型,包名:AscendCloud-LLM 支持如下模型适配PyTorch-NPU的训练(ModelLink)