检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
] } 示例2:拒绝用户删除图 拒绝策略需要同时配合其他策略使用,否则没有实际作用。用户被授予的策略中,一个授权项的作用如果同时存在Allow和Deny,则遵循Deny优先。 如果您给用户授予GES FullAccess的系统策略,但不希望用户拥有GES FullAcce
认证方式 根据不同的认证方式,客户端初始化有三种方式,可根据需要选择其中一种。 AK/SK认证 参数ak、sk、regionCode和graphEndpoint如何填写见初始化参数获取。 import com.huawei.ges.graph.v1.GESGraphClient;
索引管理 在图访问界面增加索引管理功能,方便您在界面进行索引增删查操作。 创建索引 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在图引擎编辑器左侧的索引模块,单击“创建索引”。 图1 创建索引 在创建索引弹框中,填写以下参数: 索引名称:自定义索引名称。 索引类型: 内存版图:有全局点索引和全局边索引。
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
查看查询结果 数据分析结束后,您可以直接在绘图区查看结果或者在“查询结果”页签获取结果信息。 查看查询结果的具体步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在执行Gremlin/Cypher/DSL查询或算法分析之后,在“查询结果”页签下,展示查询结果。
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
“备份管理”页面操作如下: 登录图引擎服务管理控制台。在左侧导航栏选择“备份管理”。 在“备份管理”页面右上角,单击“备份”。 在备份页面,选择“关联图”,即当前用户创建的图,单击“确定”开始备份。 图3 备份管理页面备份 “备份管理”页面的“备份”操作,可选择“关联图”,但是当系统中只有一个图时,也不能更改其关联图选项。
弹性IP的id,当publicBindType设置为bind_existing时,该值为用户某个已创建但尚未绑定的EIP的ID;当publicBindType设置为auto_assign时,该值设置为空。 表6 lts_operation_trace 参数 是否必选 参数类型 描述 enable_audit 否
jobID:异步任务的jobId。 图名称:只有持久化版图会显示图名称。 任务类型:异步任务类型(类型包括ImportGraph、VertexQuery)。 原始请求:用户发给接口原始请求的body体。 状态:包括等待、运行中、完成、取消四种。 进度:表示当前任务的运行进度。 开始时间:任务开始运行的时间,如果任务没有开始运行,该值为空。
点又称作节点(Node),边又称作关系(Relationship),点和关系是最重要的实体。 图数据模型中的点代表实体,如交通网络中的车辆、通信网络中的站点、电商交易网络中的用户和商品、互联网中的网页等。 图数据模型中的边代表关系,如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。
恢复图 如果当前编辑的图数据存在问题,需要获取之前备份的数据进行分析时,您可以将备份数据载入,以恢复图数据。 图规格为“一万边”的图和产品类型为持久化版的图没有自动备份功能,恢复图数据时只能通过手动备份恢复。其他规格的图可以通过“自动备份”和“手动备份”两种方式恢复图数据。 具体操作步骤如下:
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
历史查询 在运维监控页面左侧导航栏单击“监控>历史查询”,进入历史查询页面,该页面展示了图实例历史上运行过的异步任务的详情(和业务面任务中心展示的一样)。 图1 历史查询页面 父主题: 监控