检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
config.json # 请求的参数,根据实际启动的服务来调整 ├── mmlu_subject_mapping.json # 数据集配置 ├── ... ├── evaluators
时会直接保存到浏览器默认的下载文件夹中。 PathMappings: 该参数为本地IDE项目和Notebook对应的同步目录,默认为/home/ma-user/work/project名称,可根据自己实际情况更改。 单击“Apply”,配置完成后,重启IDE生效。 重启后初次进行update
Started server process [2878] INFO: Waiting for application startup. INFO: Application startup complete. INFO: Uvicorn running on
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH
登录ModelArts管理控制台,在左侧导航栏中选择“部署上线 > 在线服务”,默认进入“在线服务”列表。 在部署完成的目标服务中,单击操作列的“修改”,进入“修改服务”页面。 在选择模型及配置中,单击“增加模型版本进行灰度发布”添加新版本。 图1 灰度发布 您可以设置两个版本的流量占比,服务调
ing Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输
ing Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输
切换到“网络”页签,单击“创建”,弹出“创建网络”页面。 图1 网络列表 在“创建网络”弹窗中填写网络信息。 网络名称:创建网络时默认生成网络名称,也可自行修改。 网段类型:可选“预置”和“自定义”。自定义网络目前支持网段范围:10.0.0.0/8~26、172.16.0.0/12~26、192.168
ing Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输
由于模型训练过程需要大量有标签的视频数据,因此在模型训练之前需对没有标签的视频添加标签。通过ModelArts您可对视频添加标签,快速完成对视频的标注操作,也可以对已标注视频修改或删除标签进行重新标注。 视频标注仅针对视频帧进行标注。 开始标注 登录ModelArts管理控制台,在左侧菜单栏中选择“数据准备> 数据标注”,进入“数据标注”管理页面。
的MindIE镜像申请并下载2.0.T3-800I-A2-py311-openeuler24.03-lts版本的镜像。 步骤三:修改权重文件权限 修改权重文件夹属组为1001,执行权限为750。${path-to-file}/deepseekV3-bf16是转换后的权重文件存放路
服务的配置模板,已配置了ma-standard,tgi示例 │ ├── mmlu_subject_mapping.json # mmlu数据集学科信息 │ ├── ceval_subject_mapping.json # ceval数据集学科信息 ├── evaluators │ ├──
|──llama_factory_accuracy_baseline.yaml # 精度基线配置 修改样例如下,根据自己实际要求修改相应yaml文件: # 默认参数;根据自己实际要求修改 dataset_dir: /xxxx/benchmark/data/dataset dataset:
资产发布成功后,发布者可以进入详情页修改该资产的标题、封面图、描述等,让资产更吸引人。 修改封面图和二级标题 在发布的资产详情页面,单击右侧的“编辑”,选择上传新的封面图,为资产编辑独特的主副标题。 编辑完成之后单击“保存”。封面图和二级标题内容自动同步,您可以直接在资产详情页查看修改结果。 图1 修改封面图和二级标题
如果为风格微调,请准备至少50条风格相似的视频和标签,以利于拟合。 修改CogVideo/sat/configs/cogvideox_*.yaml文件 如果希望使用 Lora 微调,需要修改cogvideox_<模型参数>_lora 文件,修改参考如下: *** conditioner_config:
er文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B
er文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B
er文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B
er文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B
er文件,需要修改代码。修改文件chatglm3-6b/tokenization_chatglm.py 。 文件最后几处代码中需要修改,具体位置可根据上下文代码信息进行查找,修改后如图2所示。 图2 修改ChatGLMv3-6B tokenizer文件 图3 修改ChatGLMv3-6B