检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
数据,当前支持从OBS目录导入或从Manifest文件导入两种方式。导入之后您还可以在ModelArts数据管理模块中对数据进行重新标注或修改标注情况。 从OBS目录导入或从Manifest详细操作指导和规范说明请参见导入数据。 父主题: Standard数据准备
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH
Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1
Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b.sh和0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1
表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。 对于Yi系列模型、ChatGLMv3-6B和Qwen系列模型,还需要手动修改训练参数和tokenizer文
表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。
_segments:True 修改yaml文件路径:修改demo.sh最后一行代码,将demo.yaml配置文件路径修改为自己实际绝对路径:{work_dir}/llm_train/LLaMAFactory/demo.yaml,命令示例如下。 修改前 FORCE_TORCHRUN=1
步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b.sh 和 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1
Successful”类似信息时,表示训练作业运行成功。 在单击“Apply and Run”按钮后,系统将自动开始执行训练作业。如果您想停止此作业,可以选择菜单栏中的“ModelArts > Training Job >Stop”停止此作业。 如果单击“Apply”,不会直接启动运行,只是保存训练作业
15 16 17 18 19 FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string('model_url', '', 'path to saved model') tf.app.flags.DEFINE_string('data_url'
D:\ma_cli-latest-py3-none-any.whl -noverify > ./test 本示例以软件包在D:\举例,请根据软件包实际路径修改。 Step3:安装ma-cli 在本地环境cmd中执行命令python --version,确认环境已经安装完成Python。(Python版本需大于3
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH
创建模型时不填写apis。在创建的模型部署服务成功后,进行预测,需选择“请求类型”。“请求类型”可选择“application/json”或“multipart/form-data”。请根据元模型,选择合适的类型。 选择“application/json”时,直接填写“预测代码”进行文本预测。 选择“mu
ormer.git 修改lr_scheduler.py文件,把第27行:t_mul=1. 注释掉。 修改data文件夹下imagenet22k_dataset.py,把第28行:print("ERROR IMG LOADED: ", path) 注释掉。 修改data文件夹下的build
训练作业worker的个数。最大值请从查询作业资源规格接口返回的“max_num”值获取。 app_url 是 String 训练作业的代码目录。如:“/usr/app/”。应与boot_file_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。
表示训练完成的权重文件会自动转换为Hugging Face格式权重。如果不需要自动转换,则删除该环境变量。转换的Hugging Face格式权重会保存至OUTPUT_SAVE_DIR的目录中。 对于ChatGLMv3-6B、GLMv4-9B和Qwen系列模型,还需要手动修改tokenizer文件,具体请参见训练tokenizer文件说明。
Python代码如下,下述代码中以下参数需要手动修改: project_id:用户项目ID,获取方法请参见获取项目ID和名称。 service_id:服务ID,在服务详情页可查看。 REGION_ENDPOINT:服务的终端节点,查询请参见终端节点。 def get_app_info(project_id
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH
必须修改。训练时指定的输入数据路径。请根据实际规划修改。 ORIGINAL_HF_WEIGHT /home/ma-user/ws/models/llama2-13B 必须修改。加载Hugging Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH