检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署科学计算大模型 创建科学计算大模型部署任务 查看科学计算大模型部署任务详情 管理科学计算大模型部署任务 父主题: 开发盘古科学计算大模型
获取模型请求URI。 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的请求URI。 图1 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“预置服务”页
使用API调用NLP大模型 预置模型或训练后的模型部署成功后,可以使用“文本对话”API实现模型调用。 表1 NLP大模型API清单 API分类 API访问路径(URI) 文本对话 /v1/{project_id}/deployments/{deployment_id}/chat/completions
使用API调用科学计算大模型 预置模型或训练后的模型部署成功后,可以使用API调用科学计算大模型。 获取调用路径 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我
使用“能力调测”调用科学计算大模型 能力调测功能支持用户调用预置或训练后的科学计算大模型。使用该功能前,请完成模型的部署操作,步骤详见创建科学计算大模型部署任务。 使用“能力调测”调用科学计算大模型可实现包括全球中期天气要素预测、全球中期降水预测、全球海洋要素、区域海洋要素、全球
使用“能力调测”调用NLP大模型 能力调测功能支持用户调用预置或训练后的NLP大模型。使用该功能前,请完成模型的部署操作,步骤详见创建NLP大模型部署任务。 使用“能力调测”调用NLP大模型可实现文本对话能力,即在输入框中输入问题,模型将基于问题输出相应的回答,具体步骤如下: 登录ModelArts
语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 盘古大模型在ModelArts Studio大模型开发平台部署后,可以通过API调用推理接口。 表1 API清单 API 功能 操作指导 NLP大模型-文本对话 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。
在“高级配置”中配置提示词。单击“确定”,完成参数配置。 图6 意图识别节点参数配置 配置“提示器”节点。 鼠标拖动左侧“提问器”节点至编排页面,并连接“意图识别”的“文本翻译”意图节点与该节点,单击该节点进行配置。 在“参数配置”中,配置输入参数,如图7。 图7 配置输入参数 配置输出参数。如图8,单击“引用插件
部署后的模型可用于后续调用操作。 创建NLP大模型部署任务 查看NLP大模型部署任务详情 查看部署任务的详情,包括部署的模型基本信息、任务日志等。 查看NLP大模型部署任务详情 管理NLP大模型部署任务 可对部署任务执行执行描述、删除等操作。 管理NLP大模型部署任务 调用NLP大模型 使用“能力调测”调用NLP大模型
应。 使用该鉴权方式前,请确保有已部署的大模型。 获取APPCode步骤如下: 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 应用接入”,单击界面右上角“创建应用接入”。 在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP
填写输入参数时,deployment_id为模型部署ID,获取方式如下: 若调用部署后的模型,可在左侧导航栏中选择“模型开发 > 模型部署”,在“我的服务”页签,模型部署列表单击模型名称,在“详情”页签中,可获取模型的部署ID。 图3 部署后的模型调用路径 若调用预置模型,可在左侧导航栏中选择“模型开发
准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型 > 部署NLP大模型 > 创建NLP大模型部署任务”。 使用“能力调测”功能 调用API接口 “能力调测”功能支持用户直接调用已部署的预置服务,使用步骤如下: 登录ModelArts
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
导入数据至盘古平台 加工数据集 发布数据集 模型开发工具链 模型开发工具链是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。 该工具链具备模型训练、压缩、部署、评测、推理等功能,通过高效的推理性能和跨平台迁移工具,模型开发工具链能够保障模型在不同环境中的高效应用。 支持区域:
训练、压缩、部署。可在模型列表页面,对模型执行训练、压缩或部署操作。单击相应按钮,将跳转至相关操作页面。 导出盘古大模型至其他局点 导出盘古大模型至其他局点前,请确保当前空间为该用户所创建的空间。 模型训练发布完成后,可以通过导出模型功能将本局点训练的模型导出,导出后的模型可以通
性。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能够有效减少推理过程中的显存占用,节省推理资源,同时提高计算速度。当前,平台支持对NLP大模型进行压缩。 模型部署:平台提供了一键式模型部署功能,用户可以轻松将训练好的模型部署到云端或本地环境中。平
有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 预测大模型选择建议 选择合适的预测大模型类型有助于提升训练任务的准确程度。您可以
有效地应对具体的任务需求。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 CV大模型选择建议 选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以
在“我的凭证”页面,获取项目ID(project_id),以及账号名、账号ID、IAM用户名和IAM用户ID。 在调用盘古API时,获取的项目id需要与盘古服务部署区域一致,例如盘古大模型当前部署在“西南-贵阳一”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。