检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到
加智能。借助深度学习,我们可以制造出具有自动驾驶能力的汽车和能够理解人类语音的电话。由于深度学习的出现,机器翻译、人脸识别、预测分析、机器作曲以及无数的人工智能任务都成为可能,或相比以往有了显著改进。虽然深度学习背后的数学概念几十年前便提出,但致力于创建和训练这些深度模型的编程库
因此,更好的方式是让机器自学。深度学习(DeepLearning,DL)属于机器学习的子类。它的灵感来源于人类大脑的工作方式,是利用深度神经网络来解决特征表达的一种学习过程。深度神经网络本身并非是一个全新的概念,可理解为包含多个隐含层的神经网络结构。为了提高深层神经网络的训练效果
学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习,
使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分
学习方法——深度前馈网络、卷积神经网络、循环神经网络等;无监督学习方法——深度信念网、深度玻尔兹曼机,深度自编码器等。深度学习的思想:深度神经网络的基本思想是通过构建多层网络,对目标进行多层表示,以期通过多层的高层次特征来表示数据的抽象语义信息,获得更好的特征鲁棒性。深度学习应用
深度神经网络-隐马尔科夫模型深度神经网络-隐马尔科夫模型(DNN-HMM)利用DNN的强大的特征学习能力和HMM的序列化建模能力进行语音识别任务的处理,在很多大规模任务中,其性能远优于传统的GMM-HMM混合模型。DNN部分:特征的学习能力估计观察特征的概率预测状态的后
语言有着层级结构,大的结构部件是由小部件递归构成的。但是,当前大多数基于深度学习的语言模型都将句子视为词的序列。在遇到陌生的句子结构时,循环神经网络(RNN)无法系统地展示、扩展句子的递归结构,深度学习学到的各组特征之间的关联是平面的,没有层级关系,那么请问层级关系是重要吗,在哪些方面能够体现
深度神经网络-隐马尔科夫模型深度神经网络-隐马尔科夫模型(DNN-HMM)利用DNN的强大的特征学习能力和HMM的序列化建模能力进行语音识别任务的处理,在很多大规模任务中,其性能远优于传统的GMM-HMM混合模型。DNN部分:特征的学习能力估计观察特征的概率预测状态的后验概率
SPPNet深度学习网络模型学**结第一章 SPPNet是什么SPP (Spatial Pyramid Pooling 空间金字塔池化)是由何恺明,张翔宇,任少卿等人在2014年6月份提出来的一种深度学习网络层,可以实现给其输入不同尺寸(W,H)的图像,经过SPP层输出的尺寸都是
深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数
本文总结了利用CNNs进行图像语义分割时,针对网络结构的创新,这些创新点主要包括新神经架构的设计(不同深度、宽度、连接和拓扑结构)和新组件或层的设计。前者是利用已有的组件组装复杂的大型网络,后者是更偏向于设计底层组件。首先介绍一些经典的语义分割网络及其创新点,然后介绍网络结构设计在医学图像分割领域内的一些应用。1
为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定程度上提升了神经网
结合,以提取用于像素级标记的精密特征,而没有采用膨胀卷积和人为设计的解码器网络。 1.5 基于对抗学习的网络结构 Goodfellow等人在2014年提出了一种对抗的方法来学习深度生成模型, 生成对抗网络(GANs)中需要同时训练两个模型:捕获数据分布的生成模型G,和估计样本来自训练数据的概率的判别模型D。
深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse
plt.show() 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
深度神经网络结构解耦Architecture Disentanglement for Deep Neural Networks理解深度神经网络的内部机理对神经网络提供可信的应用十分重要。现有的研究主要聚焦于如何将具体的语义与单神经元或单层相关联,忽略了网络的整体推理过程的解释。本
所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;
别性强的特征集,是基于机器学习的故障诊断中一个长期挑战。1598845260401021874.png【翻译】近年来,深度学习方法,即有多个非线性映射层的机器学习方法,成为了基于振动信号进行故障诊断的有力工具。深度学习方法能够自动地从原始振动数据中学习特征,以取代传统的统计特征,