检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
精度对齐 精度问题是指模型从GPU设备迁移到昇腾NPU设备之后由于软硬件差异引入的精度问题。根据是否在单卡环境下,可分为单卡精度问题与多卡精度问题。多卡相对于单卡,会有卡与卡之间的通信,这可能也是精度偏差的一种来源。所以多卡的精度对齐问题相对于单卡会更复杂。不过针对多卡的精度问题,
查询训练作业列表 功能介绍 根据指定查询条件查询用户创建的训练作业列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_id}/training-job-searches
NPU日志收集上传 场景描述 当NPU出现故障,您可通过本方案收集NPU的日志信息。本方案中生成的日志会保存在节点上,并自动上传至华为云技术支持提供的OBS桶中,日志仅用于问题定位分析,因此需要您提供AK/SK给华为云技术技术,用于授权认证。 操作步骤 获取AK/SK。该AK/SK
使用AI Gallery在线推理服务部署模型 AI Gallery支持将训练的模型或创建的模型资产部署为在线推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本生成
ma-cli dli-job提交DLI Spark作业支持的命令 $ma-cli dli-job -h Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]... DLI spark job submission and query job
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed
查询标注团队成员详情 功能介绍 查询标注团队成员详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/workforces/
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
断点续训练 断点续训练是指因为某些原因导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于
断点续训练 断点续训练是指因为某些原因导致训练作业还未完成就被中断,下一次训练可以在上一次的训练基础上继续进行。这种方式对于需要长时间训练的模型而言比较友好。 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于
Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx 问题现象 在Notebook中安装依赖包时报错,报错截图如下: 原因分析 pypi源没有这个包或源不可用。 解决方案 使用别的源下载。 pip install -i 源地址
ModelArts最佳实践案例列表 在最佳实践文档中,提供了针对多种场景、多种AI引擎的ModelArts案例,方便您通过如下案例快速了解使用ModelArts完成AI开发的流程和操作。 LLM大语言模型训练推理场景 样例 场景 说明 主流开源大模型基于DevServer适配ModelLink
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明
SFT全参微调任务 前提条件 SFT全参微调使用的数据集为alpaca_data数据,已经完成数据处理,具体参见SFT全参微调数据处理。 原始的HuggingFace权重,已将原始的HuggingFace权重转换为Megatron格式,具体参见SFT全参微调权重转换 启动训练脚本
推理前的权重合并转换 模型训练完成后,训练的产物包括模型的权重、优化器状态、loss等信息。这些内容可用于断点续训、模型评测或推理任务等。 在进行模型评测或推理任务前,需要将训练后生成的多个权重文件合并,并转换成Huggingface格式的权重文件。 权重文件的合并转换操作都要求在训练的环境中进行
是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看
使用PyCharm手动连接Notebook 本地IDE环境支持PyCharm和VS Code。通过简单配置,即可用本地IDE远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 本章节介绍基于PyCharm环境访问Notebook的方式。 前提条件 本地已安装