检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
费用账单 您可以在“费用中心 > 账单管理”查看资源的费用账单,以了解该资源在某个时间段的使用量和计费信息。 账单上报周期 包年/包月计费模式的资源完成支付后,会实时上报一条账单到计费系统进行结算。 按需计费模式的资源按照固定周期上报使用量到计费系统进行结算。按需计费模式产品根据
标注图像分类数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 请确保数据集中已标注的图片不低于100张,否
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
权限管理 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照配置访问授权来进行初始权限设置。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
ModelArts权限管理基本概念 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照个人用
查看AI应用详情 查看AI应用列表 当AI应用创建成功后,您可在AI应用列表页查看所有创建的AI应用。AI应用列表页包含以下信息。 表1 AI应用列表 参数 说明 AI应用名称 AI应用的名称。 最新版本 AI应用的当前最新版本。 状态 AI应用当前状态。 部署类型 AI应用支持部署的服务类型。
自动学习训练作业失败 训练作业创建成功,但是在运行过程中,由于一些故障导致作业运行失败。 首次请检查您的账户是否欠费。如果账号状态正常。请针对不同类型的作业进行排查。 针对图像分类、声音分类、文本分类的作业,排查思路请参见确保OBS中的数据存在、检查OBS的访问权限、检查图片是否符合要求。
创建ModelArts数据选择任务 前提条件 数据已准备完成:已经创建数据集或者已经将数据上传至OBS。 确保您使用的OBS与ModelArts在同一区域。 创建数据处理任务 登录ModelArts管理控制台,在左侧的导航栏中选择“资产管理>数据处理”,进入“数据处理”页面。 在
入门案例:快速创建一个物体检测的数据集 本节以准备训练物体检测模型的数据为例,介绍如何针对样例数据,进行数据分析、数据标注等操作,完成数据准备工作。在实际业务开发过程中,可以根据业务需求选择数据管理的一种或多种功能完成数据准备。此次操作分为以下流程: 准备工作 创建数据集 数据分析