检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ile.json文件中的server_id。 managementIpAddress:主节点IP地址,和ipAddress取值一致。 httpsEnabled:取值需要修改为false。 interCommTLSEnabled和interNodeTLSEnabled:如果不需要开
<ymax>238</ymax> </bndbox> </object> </annotation> 上传OBS的操作步骤: 执行如下操作,将数据导入到您的数据集中,以便用于模型训练和构建。 登录OBS管理控制台,在ModelArts同一区域内创建桶。如果已存在可用的桶,需确保OBS桶与ModelArts在同一区域。
#在myenv的环境中安装名字为numpy的package conda install -c https://conda.anaconda.org/anaconda numpy #使用源 https://conda.anaconda.org/anaconda 安装numpy conda
务未分配完成,无法同时再启动任务。 1:运行中。labeler/reviewer进行标注和审核工作,owner验收,如新增、同步智能标注、导入未标注文件需再次分发新增文件。 2:验收中。owner发起验收任务,但并未完成验收,此时不允许发起新的验收任务,只能继续完成当前验收任务。
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
面。 图1所示图标,为JupyterLab的Git插件。 图1 Git插件 克隆GitHub的开源代码仓库 GitHub开源仓库地址:https://github.com/jupyterlab/extension-examplesitHub,单击,输入仓库地址,单击确定后即开始克
删除指定Notebook资源的标签,支持批量删除。 镜像管理 查询支持的镜像列表 根据指定条件分页查询满足条件的所有镜像。 注册自定义镜像 将用户自定义的镜像注册到ModelArts镜像管理。 查询用户镜像组列表 查询用户镜像信息概览,以镜像名称作为聚合的信息。 查询镜像详情 查询镜像详情。
预训练模型。 # 1. 调用 init_weights() 来初始化所有模型权重 # 2. 从目录中(本地或者是url)中导入序列化的模型 # 3. 使用导入的模型权重覆盖所有初始化的权重 # 4. 调用 PretrainedConfig.from_pretrained(dir)来将配置设置到self
针对您生成的模型,建议您按照ModelArts提供的模型包规范,编写推理代码和配置文件,并将推理代码和配置文件存储至训练输出位置。 模型包规范介绍 创建模型 将训练完成的模型导入至ModelArts创建为模型,方便将模型部署上线。 创建模型 部署模型 部署服务 ModelArts支持将模型部署为在线服务、批量服务和边缘服务。
ModelArts在线服务的API接口组成规则是什么? 模型部署成在线服务后,用户可以获取API接口用于访问推理。 API接口组成规则如下: https://域名/版本/infer/服务ID 示例如下: https://6ac81cdfac4f4a30be95xxxbb682.apig.xxx.xxx.com/v1/
确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTPS协议访问。ModelArts提供了SDK用于调用在线服务API,SDK调用方式请参见《SDK参考》>“场景1:部署在线服务Predictor的推理预测”。
py”也复制一份到该目录,名称改为“mslite_pipeline.py”,迁移后的推理代码中的pipeline需要修改为从复制的onnx pipeline文件导入: # onnx_pipeline.py from pipeline_onnx_stable_diffusion_img2img_mslite
载后的文件如图2所示,代码所在路径为“./models/official/cv/resnet/”。 # 下载代码 git clone https://gitee.com/mindspore/models.git -b v1.5.0 图2 下载后的模型包文件 下载花卉识别数据集。
"source": "https://test-obs.obs.{ma_endpoint}.com:443/classify/input/cat-dog/36502.jpg......", "preview": "https://test-obs.obs
三方开源源码 git clone https://gitee.com/ascend/MindSpeed.git git clone https://github.com/huggingface/transformers.git git clone https://github.com/NVIDIA/Megatron-LM
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。
单击“本地上传”可以本地批量导入超参,需要按模板填写超参且总数不能超过100条,否则会导入失败。 说明: 为保证数据安全,请勿输入敏感信息,例如明文密码。 环境变量 - 根据业务需求增加环境变量。训练容器中预置的环境变量请参见管理训练容器环境变量。 单击“本地上传”可以本地批量导入环境变量,需要