检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如下,第一组配置文件不规范将Host放到最后一行,用户要连的是下面这个Host ModelArts-Note-BmjiN实例,但SSH连到识别的是Host,错误地连到了Host ModelArts-Note-wZc6s这个实例。 按ssh-config的标准写法更新配置,Host
类的样本比率,反映模型对正样本的识别能力。 precision 精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy 准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型
更新业务中的预测API的域名。 如果您使用的是VPC内部节点访问ModelArts推理的在线服务,预测API切换域名后,由于内网VPC无法识别公网域名,请提交工单联系华为云技术支持打通网络。 父主题: 产品变更公告
类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型
Files按钮,打开文件上传窗口,选择左侧的进入远端文件上传界面。 图1 上传文件图标 图2 进入远端文件上传界面 输入有效的远端文件URL后,系统会自动识别上传文件名称,单击“上传”,开始上传文件。 图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络
4B和SigLip-400M构建,共拥有2.8B参数。MiniCPM-V2.0具有领先的光学字符识别(OCR)和多模态理解能力。该模型在综合性OCR能力评测基准OCRBench上达到开源社区的最佳水平,甚至在场景文字理解方面实现接近 Gemini Pro 的性能。 MiniCPM-V2.0值得关注的特性包括:
String 服务内的推理路径,默认为"/"。 表2 predict返回参数说明 参数 描述 返回消息体 输出的参数和值,平台只做转发,不做识别。 父主题: 服务管理
据章节。 表1 Workflow 属性 描述 是否必填 数据类型 name 工作流的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64位字符 是 str desc 工作流的描述信息 是 str steps 工作流包含的节点列表
面向熟悉代码编写和调测的AI工程师 ModelArts Standard推理部署 使用Standard一键完成商超商品识别模型部署 本案例以“商超商品识别”模型为例,介绍从AI Gallery订阅模型,一键部署到ModelArts Standard,并进行在线推理预测的体验过程。
的预测,如图4所示,输出标签名称,以及位置坐标和检测的评分。 文件类的预测代码和返回结果样例,可参见花卉识别样例。此样例是使用订阅算法训练的元模型,其输入类型为ModelArts官方定义,不可更改,如需自定义的元模型,请参见手写数字识别样例。 图4 图片预测 使用CloudShell调试在线服务实例容器
如果正确请按继续排查。 如果不正确请按上面格式修改后继续排查。 查看密钥文件的路径,建议放在C:\Users\{user}\.ssh下,并确保密钥文件无中文字符。 排查插件包是否为最新版:在extensions中搜索,看是否需要升级。检查Remote-ssh三方插件是否兼容。 4. 检查本地Vs
标注作业支持的数据类型 对于不同类型的数据集,用户可以选择不同的标注任务,当前ModelArts支持如下类型的标注任务。 图片 图像分类:识别一张图片中是否包含某种物体。 物体检测:识别出图片中每个物体的位置及类别。 图像分割:根据图片中的物体划分出不同区域。 音频 声音分类:对声音进行分类。 语音内容:对语音内容进行标注。
提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。 提供12+标注工具,方便用户进行精细化、场景化和专业化的数据标注。
对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json
对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内. 检测框对应的文本描述也可以通过<ref>text_caption</ref>表示。 json
单条音频时长应大于1s,大小不能超过4MB。 适当增加训练数据,会提升模型的精度。声音分类建议每类音频至少20条,每类音频总时长至少5分钟。 建议训练数据和真实识别场景的声音保持一致并且每类的音频尽量覆盖真实环境的所有场景。 训练集的数据质量对于模型的精度有很大影响,建议训练集音频的采样率和采样精度保持一致。
类型。 方式二:使用Java语言通过AppKey+AppSecret认证鉴权方式发送预测请求 下载Java SDK并在开发工具中完成SDK配置。具体操作请参见在Java环境中集成API请求签名的SDK。 创建Java类,进行预测请求。 由于在APIG的Java SDK中,“request
数据校验:通常数据采集后需要进行校验,保证数据合法。 数据校验是指对数据可用性的基本判断和验证的过程。通常,用户采集的数据或多或少都会有很多格式问题,无法被进一步处理。以图像识别为例,用户经常会从网上找一些图片用于训练,但是其质量难以保证,有可能图片的名字、路径、后缀名都不满足训练算法的要求;图片也可能有部分损坏,
是否必选 参数类型 描述 service_name 否 String 服务名称,支持1-64位可见字符(含中文),只能以英文大小写字母或者中文字符开头,名称可以包含字母、中文、数字、中划线、下划线。 description 否 String 服务备注,默认为空,不超过100个字符。
4_data值为string类型。 方式四:使用Java语言发送预测请求 下载Java SDK并在开发工具中完成SDK配置。具体操作请参见在Java环境中集成API请求签名的SDK。 (可选)当预测请求的输入为文件格式时,Java工程依赖httpmime模块。 在工程“libs”中增加httpmime-x