检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。 行动:使用工具[risk_detection]
审计 云审计服务(Cloud Trace Service,CTS)是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建、配置追踪器后,CTS可记录用户使用盘古的管理事件和数据事件用于审计。
properties配置文件;如果配置文件名不为llm.properties,需要在项目中主动设置,方法如下: 在resources路径下,创建llm.properties文件,并根据实际需要配置相应的值。 如果需要自定义配置文件名,可以参考以下代码设置。 // 建议在业务项目入口处配置 // 不需要添加.properties后缀
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool(Java SDK) 实例化Agent(Java SDK) 运行Agent(Java SDK) 监听Agent(Java
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool(Python SDK) 实例化Agent(Python SDK) 运行Agent(Python SDK) 监听Agent(Python
部署为边缘服务 边缘服务部署流程 边缘部署准备工作 注册边缘资源池节点 搭建边缘服务器集群 安装Ascend插件 订购盘古边缘部署服务 部署边缘模型 调用边缘模型 父主题: 部署盘古大模型
清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。
于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据
因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合,模型没有学到任何知识。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当增大“训练轮次”的值,或根据实际
推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或“核采样”等参数的设置,适当增大其中一个参数的值,可以提升模型回答的多样性。 数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而
import LLMParamConfig from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ["SDK_CONFIG_PATH"] = "./llm.properties" # 初始化LLMs
变量定义区域展示的是整个工程任务下定义的变量信息,候选提示词中关联的变量也会进行展示,候选词相关操作请参见设置候选提示词。 在模型区域单击“设置”,设置提示词输入的模型和模型参数。 图5 设置模型 同一个提示词工程中,定义的变量不能超过20个。 父主题: 撰写提示词
边缘部署准备工作 本指南的边缘部署操作以largemodel集群为例,示例集群信息如下表。 表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge
获取Token消耗规则 每个Token代表模型处理和生成文本的基本单位,它可以是一个单词、字符或字符的片段。模型的输入和输出都会被转换成Token,并根据模型的概率分布进行采样或计算。训练服务的费用按实际消耗的Token数量计算,即实际消耗的Token数量乘以Token的单价。为
自监督训练: 不涉及 有监督微调: 该场景采用下表中的微调参数进行微调,您可以在平台中参考如下参数进行训练: 表2 问答模型的微调核心参数设置 训练参数 设置值 数据批量大小(batch_size) 4 训练轮数(epoch) 3 学习率(learning_rate) 3e-6 学习率衰
如果需要模型以某个人设形象回答问题,可以将role参数设置为system。不使用人设时,可设置为user。在一次会话请求中,人设只需要设置一次。 content 是 String 对话的内容,可以是任意文本,单位token。 设置多轮对话时,message中content个数不能超过20。
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployment
结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子
# 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0.1f,代码示例如下 embedding_api = Embeddings.of("css")