检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。多模态只支持hf上下载的awq权重,可跳过步骤一。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16
数据准备使用流程 ModelArts是面向AI开发者的一站式开发平台,能够支撑开发者从数据到模型的全流程开发过程,包含数据处理、算法开发、模型训练、模型部署等操作。并且提供AI Gallery功能,能够在市场内与其他开发者分享数据、算法、模型等。为了能帮用户快速准备大量高质量的数据,Model
更新管理 ModelArts在线服务更新 对于已部署的推理服务,ModelArts支持通过更换模型的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。
通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet适配到昇腾卡进行训练,可以提高能效、支持更大模型和多样化部署环境,提升昇腾云在图像生成和编辑场景下的竞争力。 本章节介绍SDXL&SD 1.5模型的Controlnet训练过程。 Step1 处理fill50k数据集
找并订阅相应的场景化AI案例。订阅后可以一键运行案例。 AI Gallery中分享的案例支持免费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅并使用AI案例 登录“AI
计费说明 在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具
Standard开发平台的训练作业、部署模型以及开发环境时,可以使用Standard专属资源池的计算资源。使用前,您需要先购买创建一个专属资源池。 公共资源池:公共资源池提供公共的大规模计算集群,根据用户作业参数分配使用,资源按作业隔离。 用户下发训练作业、部署模型、使用开发环境实例等,均
让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型
自动学习 准备数据 模型训练 部署上线 模型发布
ModelArts Studio大模型即服务平台已预置非量化模型与AWQ-W4A16量化模型的模型模板。 非量化模型可以支持调优、压缩、部署等操作。 量化模型仅支持部署操作。当需要获取SmoothQuant-W8A8量化模型时,则可以通过对非量化模型进行模型压缩获取。
Edge 在ModelArts中使用边缘节点部署边缘服务时能否使用http接口协议?
查询数据集的团队标注任务列表 功能介绍 查询数据集的团队标注任务列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/da
使用自动学习实现预测分析 准备预测分析数据 创建预测分析项目 训练预测分析模型 部署预测分析服务 父主题: 使用自动学习实现零代码AI开发
成AI建模和应用。 如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建
如何定位Workflow运行报错 使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍
数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 Standard AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。
推理关键特性使用 量化 剪枝 分离部署 Prefix Caching multi-step 投机推理 图模式 多模态 Chunked Prefill multi-lora guided-decoding 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理