检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
面向AI开发零基础的用户 使用Standard自动学习实现口罩检测 本案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者使用ModelArts Standard的自动学习功能完成“物体检测”AI模型的训练和部署。依据开发者提供的标注数据及选择的场景,无需
} moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
} moss原始数据集是一个多轮对话的jsonl,filter的输入就是其中的一行 循环处理其中的单轮对话 在单轮对话中 对user和assistant的文本进行清洗 分别encode处理后的文本,获得对应的token序列,user_ids和assistant_ids
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
通过运行的实例保存成容器镜像 功能介绍 运行的实例可以保存成容器镜像,保存的镜像中,安装的依赖包(pip包)不丢失,VS Code远程开发场景下,在Server端安装的插件不丢失。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API
DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 sort_dir 否 String 排序方式,ASC升序,DESC降序,默认DESC。 sort_key 否 String 排序的字段,多个字段使用(“,”)逗号分隔。 type 否 String
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
模型训练是一个不断迭代和优化模型权重的过程。ModelArts的训练模块支持创建训练作业、查看训练情况以及管理训练版本。通过模型训练试验模型结构、数据和超参的各种组合,便于找到最佳的模型结构和权重。 创建生产环境的训练作业有2种方式: 通过ModelArts Standard控制台的方式创建生产环境的训练作业,详细操作请参考本章节以下内容。
/etc/profile # 注意这里的echo 要使用单引号,单引号会原样输出,双引号会解析变量 source /etc/profile # 使刚才配置生效 创建buildkitd的启动服务。其中都是buildkitd.service的内容。复制以下全部命令并运行即可。 cat
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
com(此处需要替换成对应局点的pip源地址) pip install py-spy 查看堆栈。py-spy工具的具体使用方法可参考py-spy官方文档。 # 找到训练进程的PID ps -ef # 查看进程12345的进程堆栈 # 如果是8卡的训练作业,一般用此命令依次去查看主进程起的对应的8个进程的堆栈情况
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。
静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。