检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备代码 本教程中用到的训练、推理代码如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
909软件包中的AscendCloud-AIGC-6.3.909-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤进行评测。 # WARNING # This
工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
Gallery,单击右上角“我的Gallery > 我的资产 > 模型”,进入“我的模型”页面。 选择“我的订阅”页签,进入个人订阅的模型列表。 在模型列表选择需要推送的模型,单击“应用控制台”列的服务名称将模型推送至不同应用控制台。 图2 选择应用控制台 如果订阅的是ModelArts模
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
开启图模式后,服务第一次响应请求时会有一个较长时间的图编译过程,并且会在当前目录下生成.torchair_cache文件夹来保存图编译的缓存文件。当服务第二次启动时,可通过缓存文件来快速完成图编译的过程,避免长时间的等待,并且基于图编译缓存文件来启动服务可获得更优的推理性能,因此请在有图编译缓存文件的前提下启动服务
数据类型:系统会根据您的数据集,匹配到相应的数据类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 数据集
prompt},其中id表示对话中的第几张图片。"img_path"可以是本地的图片或网络地址。 对话中的检测框可以表示为<box>(x1,y1),(x2,y2)</box>,其中 (x1, y1) 和(x2, y2)分别对应左上角和右下角的坐标,并且被归一化到[0, 1000)的范围内。检测框对应的文本描
每个输出序列要生成的最大tokens数量。 top_k 否 -1 Int 控制要考虑的前几个tokens的数量的整数。设置为-1表示考虑所有tokens。 适当降低该值可以减少采样时间。 top_p 否 1.0 Float 控制要考虑的前几个tokens的累积概率的浮点数。必须在 (0, 1] 范围内。设置为1表示考虑所有tokens。
volumes=[nfs-x]”。 原因分析 用户账号下的SFS Turbo所在的VPC网络需要与专属资源池所在的网络打通,运行于该专属资源池的训练作业才能正常挂载SFS。因此,当训练作业挂载SFS失败时,可能是网络不通导致的。 处理步骤 进入训练作业详情页,在左侧获取SFS Turbo的名称。 图1 获取SFS
物理专属池对应的资源池id。 pool_name 物理专属池对应的资源池name。 logical_pool_id 逻辑子池的id。 logical_pool_name 逻辑子池的name。 gpu_uuid 容器使用的GPU的UUID。 gpu_index 容器使用的GPU的索引。 gpu_type
包年/包月是一种先付费再使用的计费模式,适用于对资源需求稳定且希望降低成本的用户。通过选择包年/包月的计费模式,您可以预先购买云服务资源并获得一定程度的价格优惠。本文将介绍ModelArts资源包年/包月的计费规则。 适用场景 包年/包月计费模式需要用户预先支付一定时长的费用,适用于长期、稳定的业务需
object 资源池的metadata信息。 spec PoolSpecModel object 资源池的期望信息。 status PoolStatus object 资源池的状态信息。 表11 PoolMetadata 参数 参数类型 描述 name String 系统自动生成的pool名称,相当于pool
本文介绍训练作业场景下子账号所需的基本使用权限,您可参考权限清单新增对应业务场景的权限。示例场景为授权子账号使用自定义镜像训练,数据和代码存放在OBS桶中。以下内容需使用管理账号进行配置。 权限清单 权限 表1 训练作业所需权限 业务场景 依赖的服务 依赖策略项 支持的功能 配置建议 训练管理
适配加速芯片Ascend的一组AI框架+运行环境+启动方式的集合。 由于主流的Snt9系列Ascend加速卡都跑在ARM CPU规格的机器上,因此上层docker镜像也都是ARM镜像。相对于GPU场景的镜像中安装了与GPU驱动适配的CUDA(由英伟达推出的统一计算架构)计算库,A