检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
注册华为帐号并开通华为云 在使用华为云服务之前您需要注册华为帐号并开通华为云。通过此帐号,只需为使用的服务付费,即可使用所有华为云服务。 进入华为云官网,参考帐号注册指导及界面提示信息,完成帐号注册。 注册成功后即可自动登录华为云,您需要完成“实名认证”才可以正常使用服务。具体认证方式请参考帐号实名认证。
在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用资产”页面,查看应用资产。 您也可以单击“应用开发”,切换至“应用开发”页面,查看应用开发配置。 图1 进入应用详情 查看应用资产
待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-nlp/data-out”。 勾选已上传的数据集。
如何访问ModelArts Pro 云服务平台提供了提供了管理控制台的管理方式。 ModelArts Pro提供了简洁易用的管理控制台,包括自然语言处理、视觉AI、文字识别、语音识别等应用开发功能,您可以在管理控制台端到端完成您的AI应用开发。 使用ModelArts Pro管理控制台,需
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
申请公测操作完成后,单击“前往我的公测”,进入“我的公测”页面。当“审批状态”显示为“审批通过”时,表示您已经获得了该行业套件的公测权限。 申请行业套件的公测权限后,在ModelArts Pro控制台选择行业套件卡片并单击“进入套件”,即可进入行业套件的控制台。 例如单击自然语言处理套件卡片的“进入套件”,即可进入自然语言处理套件的控制台。
编辑应用 对于已经创建的模板应用,您可以修改模板的配置信息以匹配业务变化。 前提条件 已存在创建的模板应用。 编辑模板配置信息 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。 在“我的应用”页签下,选择应用并单击“操作”列的“查看”。 进入“应用资产”页面。
训练模板分类模型后,需要对模板分类器和模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并已训练,详情请见训练分类器。
Pro 提供的原子组件(Atom)灵活编排新的行业工作流。基于AI 市场,用户还可以相互分享不同行业场景的行业AI 工作流。ModelArts Pro 以“授人以渔”的方式助力企业构建AI 能力,赋能不同行业的AI 应用开发者,让AI 变得触手可及。 与ModelArts的关系 ModelArts
文字识别套件基于丰富的文字识别算法和行业知识积累,帮助客户快速构建满足不同业务场景需求的文字识别服务,实现多种版式图像的文字信息结构化提取。 文字识别套件的介绍请参见产品介绍。 预置工作流 文字识别套件当前提供了单模板工作流和多模板工作流,自主构建文字识别模板,识别模板图片中的文字,提供高
创建名称为“training-data-in”的文件夹用于存放训练数据集。 创建名称为“training-data-out”的文件夹用于存放输出的数据集。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。为保证数据能正常访问,请务必保证创建的OBS桶与ModelArts Pro服务在同一区域。
Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执
Browser+是一个比较常用的图形化工具,支持完善的桶管理和对象管理操作。推荐使用此工具创建桶或上传对象。obsutil是一款用于访问管理OBS的命令行工具,对于熟悉命令行程序的用户,obsutil是执行批量处理、自动化任务较好的选择。 如果您的业务环境需要通过API或SDK执
文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的热轧钢板表面缺陷标签准备图片数据。每个分类标签
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有材质类型的待定级图片。 为保证训练效果,需要准备至少20张待训练的图片数据,低于20张工作流
图片中的多个商品。 数据集要求 文件名规范,不能有中文,不能有+、空格、制表符。 保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。
保证图片质量:不能有损坏的图片;目前支持的格式包括JPG、JPEG、PNG、BMP。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖所有标签的图片。 基于已设计好的商品标签准备图片数据。每个商品标签需要准备20个数据以上,为了训练出效果较好的模型,