检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Workflow多分支运行介绍 当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件分支选择,可以简单的
Cloud Shell登录容器镜像中调试。 在Cloud Shell中调试多节点训练作业时,需要在Cloud Shell中切换work0、work1来实现对不同节点下发启动命令,否则任务会处于等待其他节点的状态。 如何防止Cloud Shell的Session断开 如果需要长时间
Workflow的编排主要在于每个节点的定义,您可以参考创建Workflow节点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。 根据节点功能选择相应的代码模板,进行内容的补充。
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
FaultDiag工具进行日志诊断的过程,包括日志采集、日志清洗、故障诊断三个步骤。 日志数据以节点为单位进行采集,在单节点日志目录下分别清洗,将清洗结果汇总后,进行故障诊断。例如,对于运行在8个节点共64卡集群上的任务,需要在8个节点上分别进行日志采集,收集的日志存储在worker-0 ~ worker-
Cluster适配NPU推理指导(6.3.906) ComfyUI是一款基于节点工作流的Stable Diffusion操作界面。通过将Stable Diffusion的流程巧妙分解成各个节点,成功实现了工作流的精确定制和可靠复现。每一个节点都有特定的功能,可以通过调整节点连接达到不同的出图效果。在图像生成方面,它
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
终端节点>终端节点”,进入“终端节点”页面。 单击右上角的“购买终端节点”,进入购买页面。 区域:终端节点所在区域。 不同区域的资源之间内网不互通,请确保与ModelArts所在区域保持一致。 服务类别:请选择“按名称查找服务”。 服务名称:填入步骤1中获取的“终端节点服务地址
per_device_train_batch_size=1 2*节点 & 8*Ascend 4*节点 & 8*Ascend cutoff_len=8192 lora sft per_device_train_batch_size=1 2*节点 & 8*Ascend 8*节点 & 8*Ascend 7B cutoff_len=4096
在“未标注”页签文本列表中,页面左侧罗列“标注对象列表”。在列表中单击需标注的文本对象,选中相应文本内容,在页面呈现的实体类型列表中选择实体名称,完成实体标注。 图12 实体标注 在完成多个实体标注后,鼠标左键依次单击起始实体和终止实体,在呈现的关系类型列表中选择一个对应的关系类型,完成关系标注。 图13 关系标注
出现该问题的可能原因如下: 如果在此之前是有进行数据复制的,每个节点复制的速度不是同一个时间完成的,然后有的节点没有复制完,其他节点进行torch.distributed.init_process_group()导致超时。 处理方法 如果是多个节点复制不同步,并且没有barrier的话导致的超时,可以在复制数据之前,先进行torch
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2
如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。 如果升级方式为强制升级,则根据滚动节点数量随机选择节点,隔离节点并滚动升级。 无业务节点定义:在资源池详情“节点管理”页签下,如果GPU/Ascend的可用数等于总数,则为无业务节点。 滚动驱动升级时,驱动异常的节点对升级无影响,会和驱动正常的节点一起升级。
服务部署、启动、升级和修改时,拉取镜像失败如何处理? 问题现象 服务部署、启动、升级和修改时,拉取镜像失败。 原因分析 节点磁盘不足,镜像大小过大。 解决方法 首先考虑优化镜像,减小节点磁盘的占用。 优化镜像无法解决问题,请联系系统管理员处理。 父主题: 服务部署
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2
不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2