检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
和下发维度慢卡,然后再重点关注performance problem analysis中对应维度的各项分析及其优先级。 红色为高优先级,黄色为中等优先级,绿色为低优先级。参考html进行分析调优时,请按照优先级从高到低依次进行并测试调优后性能,快速解决重点问题。 图1 html报告总览-三大模块
"cn-north-1" } } } } 其中,加粗的斜体字段需要根据实际值填写: iam_endpoint为IAM的终端节点。 user_name为IAM用户名。 user_password为用户登录密码。 domain_name为用户所属的帐号名。 cn-north-1为项目名,代表服务的部署区域。
"cn-north-1" } } } } 其中,加粗的斜体字段需要根据实际值填写: iam_endpoint为IAM的终端节点。 user_name为IAM用户名。 user_password为用户登录密码。 domain_name为用户所属的账号名。 cn-north-1为项目名,代表服务的部署区域。
hyperinstance 超节点亲和调度 affinity_group_size Integer 亲和组大小,affinity_type为hyperinstance时必填,系统会将affinity_group_size个task调度到一个超节点内组成亲和组。 用户向超节点资源池投递训练作业,
“[ "*:failed,completed", "job_step:stop" ]”。订阅Workflow失败、完成和job_step节点停止三个事件,发生这三个事件时,会有消息提醒。 POST https://{endpoint}/v2/{project_id}/workfl
hyperinstance 超节点亲和调度 affinity_group_size Integer 亲和组大小,affinity_type为hyperinstance时必填,系统会将affinity_group_size个task调度到一个超节点内组成亲和组。 用户向超节点资源池投递训练作业,
description可选填 # 通过JobStep来定义一个训练节点,输入数据来源为OBS,并将训练结果输出到OBS中 job_step = wf.steps.JobStep( name="training_job", # 训练节点的名称,命名规范(只能包含英文字母、数字、下划线(_)
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者
job_id",或从查询训练作业列表的响应中获得。 表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,默认值为"worker-0";如果在创建训练作业时参数train_instance_count选择了2,则可选值为"worker-0"
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 CP 1 表示context并行,默认为1。应用于训练长序列文本的模型。如果训练时SEQ_LEN超过32768长度,则推荐增加CP值(CP
= 购买数量 * 购买时长。 在实际使用过程中,会对时长产生扣除;扣除时长 = 所有任务消耗时长的总和,每个任务消耗的时长 = 单任务节点个数 * 任务运行时间。 套餐包余量预警 为避免产生按需消费,建议通过设置套餐包剩余量预警,以确保在套餐包用尽前及时接收预警。设置套餐包剩余量预警步骤如下:
reduce计算,但用来测试性能不太合适。因此,会出现两节点实际带宽100,但测试出速度110,甚至130GB/s的情况。加这个参数以后,2节点和2节点以上情况的速度才会稳定一些。 测试时需要执行mpirun的节点到hostfile中的节点间有免密登录,设置SSH免密登录方法如下: 客户端生成公私钥。
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九
modelarts.pool.visual.16xlarge(16卡,当前仅限910A3超节点资源池) node_count 否 Integer 资源池创建训练作业使用节点数。默认单节点。 pool_id 否 String 专属资源池id。 表45 SpecVolumes 参数 是否必选
执行成功后,日志信息如图1所示。 图1 1个计算节点GPU规格worker-0运行日志信息 计算节点个数选择为2,训练作业也可以运行。日志信息如图2和图3所示。 图2 2个计算节点worker-0运行日志信息 图3 2个计算节点worker-1运行日志信息 父主题: 制作自定义镜像用于训练模型
alpaca_gpt4_data.json # 微调数据文件 注意:多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 Step9
做量化处理。 全量和增量节点的local rank table必须一一对应。 全量和增量节点不能使用同一个端口。 scheduler实例中NODE_PORTS=8088,8089;端口设置顺序必须与global rank table文件中各全量和增量节点顺序一致,否则会报错。 步骤九