检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
传入参数"{\"start\": \"2024-05-08 08:00\", \"end\": \"2024-05-08 09:00\", \"meetingRoom\": \"A01\"}" 工具返回:2024-05-08 08:00到2024-05-08 09:00的A01已预定成功 - 步骤3
数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码
ask("写一篇五言律诗").getAnswer(); 支持调整的参数解释。 private int maxTokens; // 完成时要生成的令牌的最大数量 private double temperature; // 调整随机抽样的程度,温度值越高,随机性越大 private double
推理相关概念 表2 训练相关概念说明 概念名 说明 温度系数 温度系数(temperature)控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率。其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化。 多样性与一致性