检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型开发人员 具备总览、服务管理、能力调测、数据工程(数据管理、数据清洗)、模型开发(模型管理、模型训练、模型评估、模型压缩、模型部署)、平台管理(资产管理、权限管理)功能的使用权限。
评估数据: 选择已创建并发布的评估数据集。 基本信息: 输入任务的名称和描述。 单击“立即创建”,创建一个模型评估任务。 父主题: 评估盘古大模型
使用java sdk出现json解析报错 图1 json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型(PanguLargeModels)是集数据管理、模型训练和模型部署于一体的一站式大模型开发与应用平台。
模型压缩 在线推理 盘古-NLP-N1-基础功能模型-32K - √ - √ √ 盘古-NLP-N2-基础功能模型-4K - √ √ √ √ 盘古-NLP-N2-基础功能模型-32K - √ √ - √ 盘古-NLP-N4-基础功能模型-4K - √ - √ √ 盘古-NLP-BI
盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。
数据质量:请检查训练数据中是否存在文本重复的异常数据,可以通过规则进行清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。
数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大,则会加剧该现象。此外,若可预见实际场景会不断发生变化,建议您定期更新训练数据,对模型进行微调更新。 父主题: 典型训练问题和优化策略
同时,数据工程套件还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 模型开发套件 模型开发套件是盘古大模型服务的核心组件,提供从模型创建到部署的一站式解决方案。
我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。
Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。
通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程套件还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。
另外,还可以将评估数据集设计得更接近训练集的数据,以提升评估结果的准确性。 父主题: 评估盘古大模型
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。
搜索增强 场景介绍 私有化场景下,大模型需要基于现存的私有数据提供服务。通过外挂知识库(Embedding、向量库)方式提供通用的、标准化的文档问答场景。 工程实现 准备知识库。 获取并安装SDK包。 在配置文件(llm.properties)中配置模型信息。
检测数据集质量 清洗数据集(可选) 发布数据集 对无质量问题的数据集执行发布操作。 发布数据集 创建一个训练数据集 通过数据配比组合多个数据集,创建出用于模型训练的数据集。 创建一个训练数据集 模型训练 自监督训练 使用不含有标记的数据进行模型训练。
图2 创建评估 选择评估使用的变量数据集和评估方法。 数据集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。
通过查看测试集样本的PPL、BLEU和ROUGE等指标,进行横向(相同训练数据+不同规格的通用模型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。