检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用ModelArts Standard自动学习实现口罩检测 该案例是使用华为云一站式AI开发平台ModelArts的新版“自动学习”功能,基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“物体检测”的AI模型的训练和部署。依据开发者提供的标注
型的版本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。 滚动升级(扩实例) 需额外消耗部分实例资源用于滚动升级,扩实例越大,升级速度越快。
Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。
自动续费可以减少手动续费的管理成本,避免因忘记手动续费而导致ModelArts中专属资源池不能使用。自动续费的规则如下所述: 以专属资源池的到期日计算第一次自动续费日期和计费周期。 专属资源池自动续费周期以您选择的续费时长为准。例如,您选择了3个月,专属资源池即在每次到期前自动续费3个月。 在专属资源池到
或者输出至OBS服务指定路径,输入和输出数据需要配置3个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts推荐以下方式实现参数解析。 1 2 3 4 5 6 7 8 9 10 import argparse # 创建解析 parser = argparse
ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。 面向AI工程师,熟悉代码编写和调测,您可以使用ModelArts Standard提供的在线代码开发环境,编写训练代码进行AI模型的开发。
Chrome L3 Android 完全兼容。 Safari L3 IOS 完全兼容。 UC浏览器 L3 Android 完全兼容。 QQ浏览器 L3 Android 完全兼容。 360浏览器 L3 Android 完全兼容。 百度浏览器 L3 Android 完全兼容。 父主题:
(可选)健康检查接口 如果在滚动升级时要求不中断业务,那么必须在config.json文件中配置健康检查的接口,供ModelArts调用,在config.json文件中配置。当业务可提供正常服务时,健康检查接口返回健康状态,否则返回异常状态。 如果要实现无损滚动升级,必须配置健康检查接口。
yyyyMMdd-yyyyMMdd:搜索指定时间段内添加的样本,格式为“起始日期-结束日期”,查询天数不能超过30天。例如:“20190901-2019091501”表示搜索2019年9月1日至2019年9月15日期间的样本。 score String 根据置信度筛选。 slice_thickness
如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。 父主题: 使用自动学习实现声音分类
PyTorch在昇腾AI处理器的加速实现方式是以算子为粒度进行调用(OP-based),即通过Python与C++调用CANN层接口Ascend Computing Language(AscendCL)调用一个或几个亲和算子组合的形式,代替原有GPU的实现方式,具体逻辑模型请参考PyTorch自动迁移。
自动学习项目中,物体检测仅支持矩形标注框。在“资产管理 > 数据集”功能中,物体检测类型的数据集,支持更多类型的标注框。 在标注窗口中,您可以滚动鼠标,放大或缩小图片,方便您快速定位到物体位置。 图2 物体检测图片标注 当图片目录中所有图片都完成标注后,返回“自动学习工作流”页面,单
致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池 服务使用的是专属资源池 从训练中选择元模型
单击“确定”即可按照设置好的显示列进行显示。 同时可支持对自动学习项目显示页进行排序,单击表头中的箭头,就可对该列进行排序。 父主题: 使用自动学习实现预测分析
Workflow多分支运行介绍 当前支持两种方式实现多分支的能力,条件节点只支持双分支的选择执行,局限性较大,推荐使用配置节点参数控制分支执行的方式,可以在不添加新节点的情况下完全覆盖ConditionStep的能力,使用上更灵活。 构建条件节点控制分支执行主要用于执行流程的条件
如果需要继续使用此服务,可单击“启动”恢复。 如果您启用了自动停止功能,服务将在指定时间后自动停止,不再产生费用。 父主题: 使用自动学习实现预测分析
致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池 服务使用的是专属资源池 从训练中选择元模型
如果升级方式为安全升级,则根据滚动实例数量选择无业务的节点,隔离节点并滚动升级。 如果升级方式为强制升级,则根据滚动实例数量随机选择节点,隔离节点并滚动升级。 无业务节点定义:在资源池详情“节点”页签下,如果GPU/Ascend的可用数等于总数,则为无业务节点。 滚动驱动升级时,驱动异常的
hema信息中的“列名”为attr_1、attr_2、……、attr_n,其中attr_n为最后一列,代表预测列。 父主题: 使用自动学习实现预测分析
例数量”两种滚动方式。 按节点比例:每批次驱动升级的实例数量为“节点比例*资源池实例总数”。 按实例数量:可以设置每批次驱动升级的实例数量。 对于不同的升级方式,滚动升级选择实例的策略会不同: 如果升级方式为安全升级,则根据滚动节点数量选择无业务的节点,隔离节点并滚动升级。 如果