检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 mc2融合算子报错 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
py脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/llama#int8-kv-cache。 python convert_checkpoint.py \ --model_dir
print(x) available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") y = torch.randn(5, 3).to(available_dev) print(y)
预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH
预训练场景下数据预处理,默认参数:pretrain 微调场景下数据预处理,默认:sft / lora ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/${用户自定义的数据集路径和名称} 原始数据集的存放路径。 TOKENIZER_PATH
模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/pretrain/train-00000-of-00001-a09b74b3ef9c3b56.parquet
common_utils.py #获取训练日志工具 ├── performance.py #性能测试脚本 ├── trainer.py #训练启动脚本 ├── data.tgz # 样例数据 ├── setup.py
--model=facebook/opt-125m \ --enable-prefix-caching online openai python -m vllm.entrypoints.openai.api_server \ --model=facebook/opt-125m \ --enable-prefix-caching
模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/pretrain/train-00000-of-00001-a09b74b3ef9c3b56.parquet
ple.huawei.com Port 31215 User ma-user IdentityFile c:\Users\xxx\KeyPair-xxx.pem StrictHostKeyChecking no UserKnownHostsFile /dev/null ForwardAgent
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --
练为例: 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/pretrain/train-00000-of-00001-a09b74b3ef9c3b56.parquet
模型修改。 表1 模型训练脚本参数 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/ws/training_data/pretrain/train-00000-of-00001-a09b74b3ef9c3b56.parquet
overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 2.0e-5 num_train_epochs: 10.0 lr_scheduler_type:
per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可根据自己要求适配。取值可参考表1中梯度累积值列。 num_train_epochs
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。
ascendfactory-cli train <cfgs_yaml_file> <model_name> <exp_name> # 指定设备卡数,如2卡 ASCEND_RT_VISIBLE_DEVICES=0,1 ascendfactory-cli train <cfgs_yaml_file>
benchmark_parallel.csv 参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。