内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 强化学习预置算法

    Learning(强化学习预置算法)1. 概述该强化学习预置算法中,为用户提供了常用的强化学习算法,目前包括五个常用算法(DQN、PPO、A2C、IMPALA以及APEX)。用户订阅之后,选择算法只需设置对应参数,即可很方便地创建训练作业,开始训练相应的强化学习环境(内置环境或自

    作者: 大赛技术圈小助手
    518
    0
  • 【云驻共创】机器学习、深度学习和强化学习的关系和区别是什么

    境。 强化学习的常见模型是标准的马尔可夫决策过程。按给定条件,强化学习可分为基于模式的强化学习和无模式强化学习强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数算法两类。深度学习模型可以在强化学习中得到使用,形成深度强化学习。

    作者: 龙腾九州
    发表时间: 2022-04-29 02:13:25
    1497
    0
  • 强化学习:原理与Python实现 》

    《科学》等权威期刊发表的多个深度强化学习明星算法。本书特色本书完整地介绍了主流的强化学习理论。全书采用完整的数学体系,各章内容循序渐进,严谨地讲授强化学习的理论基础,主要定理均给出证明过程。基于理论讲解强化学习算法,覆盖了所有主流强化学习算法,包括资格迹等经典算法和深度确定性梯度策略等深度强化学习算

    作者: 华章计算机
    发表时间: 2019-11-12 09:57:45
    8106
    0
  • 【MindSpore易点通】强化学习系列之强化学习的探索和利用

    解决无模型任务的样本复杂度大的问题,基于模型的深度强化学习对解决推荐系统的问题更为可靠。该推荐系统框架使用统一的极小化极大框架学习用户行为模型和相关的奖励函数,然后再利用用户行为模型学习深度强化学习策略博弈游戏:近年来,深度强化学习在游戏博弈的应用越来越广泛。特别适用于拥有巨大状

    作者: chengxiaoli
    1058
    1
  • 通过记忆的元强化学习

    尽管现代深度强化学习(RL)算法处于人工智能能力的前沿,但通常需要大量的训练样本才能达到与人类相当的性能水平。这种严重的数据效率低下是深度RL实际应用的主要障碍: 在没有模拟器的情况下,几乎不可能将深度RL应用到任何领域。为了解决这一关键的数据低效问题,在本文中,我们致力于设计能

    作者: 可爱又积极
    844
    2
  • 【MindSpore易点通】强化学习系列之强化学习的基本求解方法(一)

    1. 简介上一节主要介绍了强化学习的基本概念,主要是通过设定场景带入强化学习的策略、奖励、状态、价值进行介绍。有了基本的元素之后,就借助马尔可夫决策过程将强化学习的任务抽象出来,最后使用贝尔曼方程进行表述。本次内容主要是介绍强化学习的求解方法。也等同于优化贝尔曼方程。2. 贝尔曼

    作者: chengxiaoli
    1353
    0
  • 什么是 强化学习 (Reinforcement Learning)

    强化学习是机器学习大家族中的一大类, 使用强化学习能够让机器学着如何在环境中拿到高分, 表现出优秀的成绩. 而这些成绩背后却是他所付出的辛苦劳动, 不断的试错, 不断地尝试, 累积经验, 学习经验.强化学习是一类算法, 是让计算机实现从一开始什么都不懂, 脑袋里没有一点想法, 通过不断地尝试

    作者: 角动量
    1872
    1
  • 【干货分享】强化学习入门之旅

    望在这篇文章中为读者呈现出强化学习的真实面貌,让我们明白什么是强化学习能做的而且能出色完成的,而哪些又仅仅是停留在纸面上的假设而已。同时作者还认为机器学习中的一些重要问题将可以通过强化学习的角度予以解决。</align><align=left> 强化学习令人不解的原因主要在于它需

    作者: 小圆子
    13983
    3
  • AI技术领域课程--强化学习

    强化学习是机器学习中与监督学习、无监督学习、半监督学习并驾齐驱的四大算法思想之一,强化学习思想接近人类的学习过程,且在游戏、自动驾驶、电商等领域获得了极大的成功。本课程将从强化学习的基础开始,一步一步揭开强化学习的神秘面纱,帮助大家使用强化学习思想解决实际应用问题。

  • 使用强化学习内置环境

    05/10/214611s75kapmgyvyjhb7n.png) #### 进入AI Gallery订阅强化学习算法 ModelArts预置的强化学习算法(名为“强化学习预置算法”)发布在AI Gallery中。您可以前往AI Gallery,订阅此模型,然后同步至ModelArts中。

    作者: 运气男孩
    924
    1
  • 强化学习网络模型

    每一个自主体是由两个神经网络模块组成,即行动网络和评估网络。行动网络是根据当前的状态而决定下一个时刻施加到环境上去的最好动作。对于行动网络,强化学习算法允许它的输出结点进行随机搜索,有了来自评估网络的内部强化信号后,行动网络的输出结点即可有效地完成随机搜索并且大大地提高选择好的动作的

    作者: QGS
    418
    1
  • 强化学习算法中SARSA

    这使得SARSA算法更适合于处理连续决策问题,如强化学习中的马尔可夫决策过程(Markov Decision Process)。 总之,SARSA是一种基于状态-动作-奖励-下一个状态-下一个动作的模式进行学习和决策的强化学习算法。它通过差分更新的方式逐步调整状态-动作对的价值

    作者: 皮牙子抓饭
    发表时间: 2023-08-29 09:12:54
    5
    0
  • 强化学习(一)模型基础

     从今天开始整理强化学习领域的知识,主要参考的资料是Sutton的强化学习书和UCL强化学习的课程。这个系列大概准备写10到20篇,希望写完后自己的强化学习碎片化知识可以得到融会贯通,也希望可以帮到更多的人,毕竟目前系统的讲解强化学习的中文资料不太多。     第一篇会从强化学习的基本概

    作者: 格图洛书
    发表时间: 2021-12-29 15:34:17
    473
    0
  • 强化学习心得2

    一只熊;而强化学习输出的是当看到一只熊时要作出怎样的反应,是趴下装死还是赶紧跑路。对于一颗植物来说,对于植物现在时刻的状态选择浇水或者不浇水,都会以一定的概率得到植物的下一个状态。这就是强化学习。对于强化学习来说,有以下4个核心组成部分:强化学习四元组E = <S,A,P,R>s:state

    作者: xia1111
    1052
    1
  • 学习《强化学习的落地实践》有感

    今天观看了郝建业老师的《强化学习落地实践》的报告直播,颇有收获。首先,郝建业老师对强化学习的基本知识、发展历史进行了讲解,展示了深度学习与强化学习的深层差异。 随后,老师讲解了目前的深度强化学习存在的问题:学习效率底下,所需资源庞大。相比之下,人类不是从头学习,而是从过往的知识中

    作者: Thund1r
    发表时间: 2020-03-13 18:05:39
    10540
    0
  • 使用强化学习内置环境

    05/10/214611s75kapmgyvyjhb7n.png) #### 进入AI Gallery订阅强化学习算法 ModelArts预置的强化学习算法(名为“强化学习预置算法”)发布在AI Gallery中。您可以前往AI Gallery,订阅此模型,然后同步至ModelArts中。

    作者: 运气男孩
    1564
    3
  • 强化学习心得3

    从SARSA到Q-learning对于智能体agent来说,要做的就是在环境中不断尝试而学习得到一个“策略”π,根据这个策略,在状态x下就能得知要执行的动作a = π(x)。图中的r即为状态动作的价值。通常我们使用Q表格来储存每一个状态下选择某一种动作所带来的价值。如上图所示通常

    作者: xia1111
    1147
    5
  • 强化学习心得4

    从SARSA到Q-learning接下来介绍SARSA与Q-learning算法,算法步骤如下所示:引用《introduction to reinforcement learning》一书中的伪代码如下所示:两者的区别在于而Sarsa在每一步中以e-greedy的策略选取下一个状

    作者: xia1111
    850
    3
  • easyRL学习笔记:强化学习基础

    习是异策略的每次算maxQ,第六章深度Q网络是只属于异策略部分的一个深度算法。 第六章刚开始的价值函数近似只有Q函数近似,是不是就是说策略迭代时候从Q表格找maxQ用近似函数代替,价值迭代时候不需要近似V函数,然后这个近似Q和不近似的V再用深度网络训练。 DQN里还有目标网络,是

    作者: irrational
    发表时间: 2022-08-30 16:46:05
    288
    0