检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。
的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。 切分点数量 定义每个特征切分点的数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。
根据业务需求和策略,经济地自动调整弹性计算资源的管理服务。 服务治理:深度集成应用服务网格,提供开箱即用的应用服务网格流量治理能力,用户无需修改代码,即可实现灰度发布、流量治理和流量监控能力。 容器运维:深度集成容器智能分析,可实时监控应用及资源,支持采集、管理、分析日志,采集各项指标及事件并提供一键开启的告警能力。
存储概述 存储概览 CCE的容器存储功能基于Kubernetes容器存储接口(CSI)实现,深度融合多种类型的云存储并全面覆盖不同的应用场景,而且完全兼容Kubernetes原生的存储服务,例如EmptyDir、HostPath、Secret、ConfigMap等存储类型。 图1
视频类加工算子介绍 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。 表1
车牌识别技能 技能描述 面向智慧商超的车牌技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中的车牌,结果自动上传至您的后台系统,用于后续实现其他业务。 本技能支持: 显示外接IPC摄像头中捕捉到的画面中出现的车牌信息。 画面中同时出现多个车牌的情况下只支持一个车牌的显示及结果上传。
安全帽检测技能 技能描述 面向智慧园区的安全帽检测技能。本技能使用深度学习算法,实时分析视频流,自动检测园区工人未戴安全帽的行为。 本技能支持根据业务需求划定区域,只检测固定区域内的未戴安全帽的行为,技能返回该区域内安全帽检测的统计信息和坐标信息。 使用时需要提供您的业务REST
存储概述 存储概览 CCE Autopilot集群的容器存储功能基于Kubernetes容器存储接口(CSI)实现,深度融合多种类型的云存储并全面覆盖不同的应用场景,而且完全兼容Kubernetes原生的存储服务,例如EmptyDir、Secret、ConfigMap等存储类型。
CCE云容器引擎是否支持负载均衡? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? CCE是否和深度学习服务可以内网通信? 更多 远程登录
yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型
yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 1、DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持于llama3系列 2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型
MindIE和vLLM在深度思考返回接口差异 对于DeepSeek-R1这类模型,其返回信息包含深度思考的内容。 当前MindIE接口深度思考内容和问题回答都在content字段中,类似“xxx</think>xxx“,通常</think>前面的即为深度思考内容,后面的为问题回答
的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。 切分点数量 定义每个特征切分点的数量,数量越多,准确率越高,计算时间越长。取值范围为5~10的整数。
yaml内容。 RM奖励训练,复制rm_yaml样例模板内容覆盖demo.yaml文件内容。 DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持llama3系列。 PPO训练暂不支持llama3-70B,存在已知的内存OOM问题,待社区版本修复。 训练策略类型 全参full,配置如下:
者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 支持将平台资产中心的部分模型作为微调前基础模型,也支持选择微调后的新模型作为基础模型再次进行微调。
查看终端安全总览 背景信息 智能终端安全服务首页支持查看服务整体运行状况,包括实时感知、智能分析、深度清理三大模块。同时基于终端上报的各项数据汇总分析,呈现威胁事件TOP10终端、近30天安全风险趋势等统计信息,数据实时更新,趋势实时跟踪,帮助您了解并掌握当前终端安全的总体态势。
exe)运行状态,状态为“正在运行”,代表采集器已启动。 返回MgC控制台,单击资源深度采集列的“重新采集”,重新进行资源采集。 重启Linux采集器 登录MgC控制台,确保当前MgC Agent没有深度采集、内网扫描、VMware采集等任务在执行中。如果有,请等待采集任务完成后再进行后续操作。
什么是云原生网络2.0网络模式,适用于什么场景? 云原生网络2.0是什么 云原生网络2.0是新一代容器网络模型,深度整合了虚拟私有云VPC的原生弹性网卡(Elastic Network Interface,简称ENI)能力,采用VPC网段分配容器地址,支持ELB直通容器,享有高性能。
智能文档解析 功能介绍 智能文档解析基于领先的深度学习技术,对含有结构化信息的文档图像进行键值对提取、表格识别与版面分析并返回相关信息。不限制版式情况,可支持多种证件、票据和规范行业文档,适用于各类行业场景。 应用场景 金融:银行回单、转账存单、理财信息截图等。 政务:身份证、结婚证、居住证、各类企业资质证照。
服务器资源就类似一块块资源拼成的木桶,其最多能承载的业务需求取决于哪一块资源最先达到瓶颈。 不同应用对资源需求不同,例如: 功耗密集型业务(如高性能计算、人工智能、深度学习等场景)主要就是消耗计算维度的容量。 内存密集型业务(如大数据处理、图像/视频处理、游戏开发、数据库等场景)主要消耗内存和存储维度的容量。