已找到以下 10000 条记录
  • 强化学习在游戏中的应用

    为奖赏的依据,可以利用深度强化学习来训练智能体做出合理的动作序列。例如,伯克利的研究人员提出的DeepMimic系统,通过深度强化学习模仿人类动作,生成高质量的角色动画。5. 个性化推荐游戏中存在大量的个性化推荐场景,如道具推荐、关卡推荐等。强化学习可以根据玩家的特征、游戏内信息

    作者: Jack20
    6
    0
  • ModelArts使用强化学习内置环境

    05/10/214611s75kapmgyvyjhb7n.png) #### 进入AI Gallery订阅强化学习算法 ModelArts预置的强化学习算法(名为“强化学习预置算法”)发布在AI Gallery中。您可以前往AI Gallery,订阅此模型,然后同步至ModelArts中。

    作者: 运气男孩
    1459
    3
  • 【话题讨论】强化学习的应用

    强化学习是一门逐渐兴起的学科,与传统的机器学习不同,强化学习以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏。在业界,强化学习还广泛应用于各类游戏AI的开发中。最为著名的便是alphago击败了围棋世界冠军李世石与柯洁。除此之外,例如在

    作者: xia1111
    1750
    10
  • 探索Python中的强化学习:DQN

    强化学习是一种机器学习方法,用于训练智能体(agent)在与环境的交互中学习如何做出最优决策。DQN(Deep Q-Network)是强化学习中的一种基于深度神经网络的方法,用于学习最优策略。本文将详细介绍DQN的原理、实现方式以及如何在Python中应用。 什么是DQN? D

    作者: Echo_Wish
    发表时间: 2024-04-01 08:55:17
    103
    0
  • 强化学习 的 使用范围

    一  尽管我们在机器学习社区中广泛使用强化学习,但强化学习不仅仅是一个人工智能术语,它是许多领域中的一个中心思想,如下图(强化学习的多个方面,Many Faces of Reinforcement Learning)所示。二  事实上,许多这些领域面临着与机器学习相同的问题:如何优化决策以实现最佳结果,这就是决策科学

    作者: 我就是豆豆
    389
    0
  • 【论文分享】基于深度强化学习的无人机数据采集和路径规划研究

    传感器网络数据采集时的路径规划问题进行了研究,同时满足无人机自身因电池容量有限而产生的充电需求。具体地,利用时间抽象分层强化学习思想,基于离散动作深度强化学习架构,提出了一种新颖的option-DQN(option-deep Q-learning)算法,实现了高效的无人机数据采集

    作者: 乔天伊
    460
    2
  • ModelAr使用强化学习内置环境

    05/10/214611s75kapmgyvyjhb7n.png) #### 进入AI Gallery订阅强化学习算法 ModelArts预置的强化学习算法(名为“强化学习预置算法”)发布在AI Gallery中。您可以前往AI Gallery,订阅此模型,然后同步至ModelArts中。

    作者: 运气男孩
    528
    1
  • 强化学习-云机器人

    强化学习是智能体(Agent)以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使智能体获得最大的奖赏,强化学习不同于连接主义学习中的监督学习,主要表现在强化信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学

    作者: QGS
    841
    3
  • 强化学习的使用范围是什么?

    尽管我们在机器学习社区中广泛使用强化学习,但强化学习不仅仅是一个人工智能术语,它是许多领域中的一个中心思想,如下图(强化学习的多个方面,Many Faces of Reinforcement Learning)所示。事实上,许多这些领域面临着与机器学习相同的问题:如何优化决策以实现最佳结果,这就是决策科学

    作者: 极客潇
    1489
    2
  • MindSpore强化强化学习:使用mindrl

    安装MindRL pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.0/Reinforcement/x86_64/mindspore_rl-0.7.0-py3-none-linux_x86_64

    作者: irrational
    发表时间: 2024-04-14 18:34:15
    1328
    0
  • 强化学习游戏训练框架ASED

    json说明env_config.py说明game_interface.py说明Benchmark实验数据5. 更多信息强化学习入门课程案例使用强化学习AlphaZero算法训练中国象棋AI与中国象棋AI对战!使用强化学习AlphaZero算法训练五子棋AI使用DQN算法玩2048游戏使用PPO算法玩超级马里奥

    作者: 开发者创新中心小广播
    690
    0
  • 使用Python实现强化学习算法

    当谈论强化学习时,我们在讨论一种机器学习方法,其目标是教会智能体(agent)在与环境的交互中学习最优的行为策略,以最大化累积奖励。在本文中,我们将介绍强化学习的基本概念,并使用 Python 和 OpenAI 的 Gym 库来实现一个简单的强化学习算法:Q-learning。

    作者: Echo_Wish
    发表时间: 2024-04-26 08:54:34
    61
    0
  • 强化学习从基础到进阶-案例与实践[1]:强化学习概述、序列决策、动作空间定义、策略价值函数、探索与利用、Gym强化学习实验

    1.3 强化学习的历史 强化学习是有一定的历史的,早期的强化学习,我们称其为标准强化学习。最近业界把强化学习深度学习结合起来,就形成了深度强化学习(deep reinforcemet learning),因此,深度强化学习 = 深度学习 + 强化学习。我们可将标准强化学习和深度强

    作者: 汀丶
    发表时间: 2023-06-19 11:07:20
    10
    0
  • 可达性约束强化学习

    约束强化学习(CRL)最近引起了人们的极大兴趣,因为满足安全约束对现实世界的问题至关重要。然而,现有的CRL方法对折现累积成本的约束通常缺乏严格的定义和安全性保证。另一方面,在安全控制研究中,安全被定义为持续满足一定的状态约束。这种持久安全只在状态空间的一个子集上是可能的,这个子

    作者: 可爱又积极
    536
    2
  • 强化学习做股票预测

    强化学习是机器学习的重要组成部分,在棋牌游戏中应用较多,那么能否将它用于股票预测呢?wangshub开源了一个股票强化学习项目。 https://github.com/wangshub/RL-Stock.git 基于此项目,我们来做个简单的尝试。 首先克隆代码 !git clone

    作者: darkpard
    发表时间: 2022-09-11 02:25:04
    352
    0
  • 强化学习论文阅读笔记:RODE

    文章来自ICLR 2021:RODE: Learning Roles to Decompose Multi-Agent Tasks 链接:https://arxiv.org/abs/2010.01523 代码:https://github.com/TonghanWang/RODE

    作者: yyy7124
    1103
    3
  • 基于Qlearning强化学习的路径规划算法matlab仿真

    算法运行软件版本 MATLAB2022A     3.算法理论概述         路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决

    作者: 简简单单做算法
    发表时间: 2023-10-10 23:27:00
    68
    0
  • 强化学习AI的未来发展

    随着人工智能技术的不断发展,强化学习成为了一个备受关注的热门领域。作为一项能够让机器模仿人类决策过程的技术,强化学习在日常生活中得到了广泛的应用。在这篇文章中,我们将探讨强化学习AI的未来发展,在未来的数年中,我们有望看到它成为AI技术的主要引擎之一。 强化学习是一种让机器通过学习来达

    作者: 赵KK日常技术记录
    发表时间: 2023-06-25 18:01:06
    12
    0
  • 强化学习(十五) A3C

     在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化。而Asynchronous Advantage Actor-criti

    作者: 格图洛书
    发表时间: 2021-12-29 16:15:54
    346
    0
  • 《解锁元宇宙虚拟角色自主行为:AI与深度强化学习的融合变革》

    决策。 深度强化学习:实现自主决策的“学习引擎” 深度强化学习(DRL)作为机器学习的一个重要分支,为虚拟角色的自主行为决策提供了强大的学习机制。它结合了深度学习的强大表征能力和强化学习的试错学习机制,让虚拟角色能够在与环境的交互中不断学习和优化自己的行为策略。 在深度强化学习中

    作者: 程序员阿伟
    发表时间: 2025-02-22 15:24:49
    0
    0