检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
同时ModelArts还提供多种编程语言的SDK供您使用,SDK的使用方法请参见ModelArts SDK参考。 终端节点 终端节点(Endpoint)即调用API的请求地址,不同服务不同区域的终端节点不同,您可以从地区和终端节点中查询所有服务的终端节点。 约束与限制 您能创建的ModelArts资源的数量与配额有关系,具体请参见服务配额。
00:00(北京时间)用AI开发平台ModelArts的新版数据集全面替代旧版数据集,旧版数据集正式下线。 下线范围 下线区域:华北-北京四(其他区域已下线) 受影响服务 ModelArts旧版数据集。 下线影响 正式下线后,所有用户将无法使用旧版数据集。为了避免影响您的业务,建议您在2024/10/30
下线公告 【下线公告】华为云ModelArts自动学习下线公告 【下线公告】华为云ModelArts自动学习模块的文本分类功能下线公告 【下线公告】华为云ModelArts服务旧版数据集下线公告 【下线公告】华为云ModelArts服务模型转换下线公告 【下线公告】华为云ModelArts
)和本地上传。 数据集中的数据导入入口 数据集中的数据导入有5个入口。 创建数据集时直接从设置的数据导入路径中自动同步数据。 创建完数据集后,在数据集列表页面的操作栏单击“导入”,导入数据。 图1 在数据集列表页导入数据 在数据集列表页面,单击某个数据集的名称,进入数据集详情页中,单击“导入>导入”,导入数据。
value 否 Long 付费工作流可使用的时间值。 响应参数 状态码:201 表4 响应Body参数 参数 参数类型 描述 result String 认证结果。 请求示例 对在线服务进行鉴权。设置付费工作流计费周期为“day”,付费工作流可使用的时间为“100”。 POST htt
(响应消息头中X-Subject-Token的值)。 表3 请求Body参数 参数 是否必选 参数类型 描述 status 是 String 服务状态,取值为: running:running为启动节点实例,只有处于stopped状态的节点实例支持启动。 stopped:stop
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e
依次单击需要复核的图片,在标注页面拖动图片的标注框,即可重新完成标注。(修改后的图片会带有“已修改”的信息。) 您也可以选中需要删除标签的图片,单击右上方的,删除原始的标注信息。(删除后的图片会带有“已删除”的信息) 图10 已修改 图11 已删除 您也可以对当前已标注的图片标签信息进行修改。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
String 用户GaussDB(DWS)集群的IP地址。 port 否 String 用户GaussDB(DWS)集群的端口。 queue_name 否 String 表格数据集,DLI队列名。 subnet_id 否 String MRS集群的子网ID。 table_name 否 String
查询APP的API认证信息 功能介绍 查询APP的API认证信息。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/serv
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将上一步中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e
本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workflow_id 是 String 工作流的ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 status 否 String 服务包状态。 pool_id 是 String
存在创建并使用的工作空间,以实际取值为准。 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 e
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: