检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
ModelArts支持将模型部署为哪些类型的服务? 支持在线服务、批量服务和边缘服务。 父主题: 功能咨询
在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。 表1 必须修改的训练超参配置 参数 示例值 参数说明
预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调、超参配置、训练任务、性能查看。 LoRA微调训练 介绍如何进行LoRA微调、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于DevServer适配ModelLink
创建训练任务 登录ModelArts管理控制台,检查当前帐号是否已完成访问授权的配置。如果未完成,请参考使用委托授权针对之前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。 在左侧导航栏中选择“模型训练 > 训练作业”,默认进入“训练作业”列表。单击“创建训练作业”进入创建训练作业页面。
可以作为自定义镜像,方便后续使用,并且方便进行分享。 保存镜像时,安装的依赖包(pip包)不丢失,VS Code远程开发场景下,在Server端安装的插件不丢失。 亮点特性3:预置镜像 - 即开即用,优化配置,支持主流AI引擎 每个镜像预置的AI引擎和版本是固定的,在创建Not
“PretrainedConfig”:预训练模型的配置基类 提供模型配置的通用属性和两个主要方法,用于序列化和反序列化配置文件。 PretrainedConfig.from_pretrained(dir) # 从目录中加载序列化对象(本地或者是url),配置文件为dir/config.json
部署GPU服务支持的Cuda版本是多少? 默认支持Cuda版本为10.2,如果需要更高的版本,可以提工单申请技术支持。 父主题: 功能咨询
出现此问题现象,通常是因为您部署的模型过大导致的。解决方法如下: 精简模型,重新导入模型和部署上线。 购买专属资源池,在部署上线为在线服务时,使用专属资源池进行部署。 父主题: 服务部署
零代码、免配置、免调优模型开发 平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践。通过为客户提供一键式训练、自动超参调优等能力,和高度自动化的参数配置机制,使得模型优化过程不再依赖于手动尝试,显著缩短了从模型开发到部署的周期,确
新镜像的方式(二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 E
新镜像的方式(二选一)来部署训练环境。方案的区别如下: 直接使用基础镜像方案:用户可在训练作业中直接选择基础镜像作为运行环境。但基础镜像中pip依赖包缺少或版本不匹配,因此每次创建训练作业时,训练作业的启动命令中都需要执行install.sh文件,来安装依赖以及下载完整代码。 E
查看在线服务详情 查看在线服务的事件 管理在线服务生命周期 修改在线服务配置 在云监控平台查看在线服务性能指标 集成在线服务API至生产环境中应用 设置在线服务故障自动重启 父主题: 使用ModelArts Standard部署模型并推理预测
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
管理批量推理作业 查看批量服务详情 查看批量服务的事件 管理批量服务生命周期 修改批量服务配置 父主题: 使用ModelArts Standard部署模型并推理预测
点池时不支持删除。 查看节点池的存储配置 在节点池管理的更新页面,可以查看该节点池配置的系统盘、容器盘或数据盘的磁盘类型、大小、数量、写入模式、容器引擎空间大小、挂载路径磁盘配置等参数。 在Lite资源池的扩缩容页面,也可以查看节点池的存储配置信息。 查找搜索节点池 在节点池管理
服务部署、启动、升级和修改时,镜像不断重启如何处理? 问题现象 服务部署、启动、升级和修改时,镜像不断重启。 原因分析 容器镜像代码错误 解决方法 根据容器日志进行排查,修复代码,重新创建模型,部署服务。 父主题: 服务部署
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key