检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建科学计算大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。 表1 科学计算大模型部署参数说明
模型开发 ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts
使用数据工程构建预测大模型数据集 预测大模型支持接入的数据集类型 盘古预测大模型仅支持接入预测类数据集,不同模型所需数据见表1,该数据集格式要求请参见预测类数据集格式要求。 表1 预测大模型与数据集类型对应关系 基模型 模型分类 数据集内容 文件格式 预测大模型 时序预测模型 时序数据
数据工程使用流程 高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤
数据工程常见报错与解决方案 数据工程常见报错及解决方案请详见表1。 表1 数据工程常见报错与解决方案 功能模块 常见报错 解决方案 数据获取 File format mismatch, require [{0}]. 请检查创建数据集时使用的数据,与平台要求的文件内容格式是否一致。
提示词写作常用方法论 提示词工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了较为简单的任务作为示例
文本类清洗算子能力清单 数据清洗算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持文本类数据集的清洗操作,分为数据提取、数据转换、数据过滤三类,文本类加工算子能力清单见表
应用 功能介绍 通过调用创建好的应用API,输入问题,将得到应用执行的结果。 URI 获取URI方式请参见请求URI。 POST /v1/{project_id}/agent-run/agents/{agent_id}/conversations/{conversation_id}
使用数据工程构建CV大模型数据集 CV大模型支持接入的数据集类型 盘古CV大模型支持接入图片类、视频类、其他类数据集,,不同模型所需数据见表1,数据集格式要求请参见图片类数据集格式要求、视频类数据集格式要求、其他类数据集格式要求。 表1 训练CV大模型数据集类型要求 基模型 训练场景
数据工程介绍 数据工程介绍 数据工程是ModelArts Studio大模型开发平台(下文简称“平台”)为用户提供的一站式数据处理与管理功能,旨在通过系统化的数据获取、加工、发布等过程,确保数据能够高效、准确地为大模型的训练提供支持,帮助用户高效管理和处理数据,提升数据质量和处理效率