检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自定义模型 如果使用的模型不是盘古或者兼容OpenAI-API的开源模型,如,闭源模型或者裸机部署的自定义推理服务,可以通过继承AbstractLLM自定义一个模型,示例代码如下: @Slf4j public class CustomLLM extends AbstractLLM<LLMResp>
高质量的提示词,可以将提示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。 图1 提示词工程 勾选所需的提示词,并单击“保存到模板库”。
横向比较提示词效果 设置候选提示词 横向比较提示词效果 父主题: 提示词工程
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 提示词工程
vider,一个向量数据库配置。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,InMemoryToolProvider的原理为将完整的工具存入内存,再根据工具检索的结果(tool_id)将其从
准备盘古大模型训练数据集 训练数据集创建流程 模型训练所需数据量与数据格式要求 创建一个新的数据集 检测数据集质量 清洗数据集(可选) 发布数据集 创建一个训练数据集
创建训练任务 创建自监督微调训练任务 创建有监督训练任务 父主题: 训练盘古大模型
其衍生模型,使用通用模型或其他模型无法运行。当前的moduleVersion需要配置为“N2_agent_v2”,如上例所示,因此模型的url要配置为Pangu-NLP-N2-Default模型的地址。 支持注册开源模型,开源模型的定义可参考开源模型。 final LLM llm
盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1GB,所有文件的总大小不得超过200GB。 表1
设置候选提示词 用户可以将效果较好的提示词设为候选提示词,并对提示词进行比对查看效果。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务操作栏中的“撰写”。 图1 撰写提示词
调测AI助手 在AI助手的创建页面可以直接进行调测,也可以在AI助手列表页进行调测。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,选择需要调测的AI助手,单击“调测”按钮。 图1 AI助手 在调测页面,可以调整AI助手的指令,输入问题后,单击“运行”获得模型回复结果。
模型的基础信息 盘古大模型平台为用户提供了多种规格的模型,涵盖从基模型到功能模型的多种选择,以满足不同场景和需求。不同模型在处理上下文token长度和功能上有所差异,以下是当前支持的模型清单,您可以根据实际需求选择最合适的模型进行开发和应用。 表1 NLP大模型清单 模型类别 模型
vider和向量数据库配置2个参数。其中,ToolProvider的作用为根据工具检索的结果组装工具。 上述例子使用了一个简单的InMemoryToolProvider,InMemoryToolProvider的原理为将完整的工具存入内存,再根据工具检索的结果(toolId)将其
Skill(技能) 基础问答 多轮对话 文档问答 文档摘要 父主题: Java SDK
应用示例 搜索增强 长文本摘要 父主题: Python SDK
应用示例 搜索增强 长文本摘要 父主题: Java SDK
split(通过配置文件指定filePath和mode) DocSplit docPanguSplit = DocSplits.of(DocSplits.PANGUDOC); 其中,filePath指的是需要解析的文档路径,mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。
maximumSize = -1; 语义缓存:语义缓存是一种基于向量和相似度的缓存方法,它可以实现对数据的语义匹配和查询。语义缓存可以根据不同的向量存储、相似算法、评分规则和阈值进行配置,并且可以使用不同的词向量模型进行嵌入。 import com.huaweicloud.pangu
DocSplit为例。 其中,filePath指的是需要解析的文档路径;mode为分割解析模式,具体定义如下: 0 - 返回文档的原始段落,不做其他处理。 1 - 根据标注的书签或目录分段,一般适合有层级标签的word文档。 2 - 根据内容里的章节条分段,适合制度类文档。 3 - 根据长度分
Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。