已找到以下 10000 条记录
  • 深度学习释义

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: 某地瓜
    1961
    1
  • 深度学习导论

    Network)的扩展和应用为基础,这次浪潮的出现标志着深度学习时代的来临。这一阶段的研究主要集中在如何提高深度神经网络的性能和泛化能力上。SVM作为一种经典的机器学习算法,在分类问题上表现出了良好的性能。随着深度学习的不断发展,其应用领域也在不断扩大。深度学习已经成为了许多领域的重要工具,例如自然

    作者: 林欣
    42
    1
  • 各个模型深度学习训练加速框架的选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

  • 深度学习之Bagging学习

    回想一下Bagging学习,我们定义 k 个不同的模型,从训练集有替换采样构造k 个不同的数据集,然后在训练集 i 上训练模型 i。Dropout的目标是在指数级数量的神经网络上近似这个过程。具体来说,在训练中使用Dropout时,我们会使用基于小批量的学习算法和较小的步长,如梯

    作者: 小强鼓掌
    1254
    2
  • 深度学习学习 XOR

    发挥作用的一个简单例子说起:学习 XOR 函数。       XOR 函数(“异或” 逻辑)是两个二进制值 x1 和 x2 的运算。当这些二进制值中恰好有一个为 1 时,XOR 函数返回值为 1。其余情况下返回值为 0。XOR 函数提供了我们想要学习的目标函数 y = f∗(x)。我们的模型给出了一个函数

    作者: 小强鼓掌
    951
    3
  • 导入和预处理训练数据集 - CodeArts IDE Online

    plt.show() 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    177
    1
  • 深度学习之机器学习基础

    深度学习是机器学习的一个特定分支。要想学好深度学习,必须对机器学习的基本原理有深刻的理解。本章将探讨贯穿本书其余部分的一些机器学习重要原理。我们建议新手读者或是希望更全面了解的读者参考一些更全面覆盖基础知识的机器学习参考书,例如Murphy (2012) 或者Bishop (20

    作者: 小强鼓掌
    840
    2
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态和动态),深度学习可以比单一模式更深入地理解和表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 机器学习深度学习区别

    深度学习由经典机器学习发展而来,两者有着相同与不同特点1.完全不同的模式机器学习:使计算机能从数据中学习,并利用其学到的知识来提供答案(通常为预测)。依赖于不同的范式(paradigms),例如统计分析、寻找数据相似性、使用逻辑等深度学习:使用单一技术,最小化人脑劳动。使用被称为

    作者: 极客潇
    1358
    4
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1264
    13
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1676
    3
  • 深度学习发展的学习范式——成分学习

    成分学习    成分学习不仅使用一个模型的知识,而且使用多个模型的知识。人们相信,通过独特的信息组合或投入(包括静态和动态的),深度学习可以比单一的模型在理解和性能上不断深入。    迁移学习是一个非常明显的成分学习的例子, 基于这样的一个想法, 在相似问题上预训练的模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习深度前馈网络

           深度前馈网络 (deep feedforward network),也叫作前馈神经网络 (feedforward neural network) 或者多层感知机 (multilayer perceptron, MLP),是典型的深度学习模型。前馈网络的目标是近似某个函数

    作者: 小强鼓掌
    1256
    4
  • 深度学习初体验

    通过对课程的学习,从对EI的初体验到对深度学习的基本理解,收获了很多,做出如下总结:深度学习是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉和自然语言处理

    作者: ad123445
    8090
    33
  • 深度学习之流形学习

    字“8” 形状的流形在大多数位置只有一维,但在中心的相交处有两维。      如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    例如,数字 “8’’ 形状的流形在大多数位置只有一维,但在中心的相交处有两维。如果我们希望机器学习算法学习 Rn 上的所有感兴趣的函数,那么很多机器学习问题看上去都是不可解的。流形学习 (manifold learning) 算法通过一个假设来克服这个障碍,该假设认为 Rn 中大

    作者: 小强鼓掌
    813
    1
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    839
    2