检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最常用的矩阵运算是矩阵的转置。转置就像是翻转。就像是一个扑克牌,原来是竖着拿的,把它变成翻面横着拿了。 ![image.png](https://bbs-img.huaweicloud.com/data/forums/attachment/forum/20227/27/1658883526687508822
将数据集分成固定的训练集和固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。 当数据集有十万计或者更多的样本时,这不会是一个严重的
为了更精确地描述反向传播算法,使用更精确的计算图(computational graph)语言是很有帮助的。将计算形式化为图形的方法有很多。这里,我们使用图中的每一个节点来表示一个变量。变量可以是标量、向量、矩阵、张量、或者甚至是另一类型的变量。为了形式化我们的图形,我们还需引入
准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP),mean Average Precision(mAP),交除并(IoU),ROC + AUC,非极大值抑制(NMS)。1、准确率
当我们使用机器学习算法时,我们不会提前固定参数,然后从数据集中采样。我们会在训练集上采样,然后挑选参数去降低训练集误差,然后再在测试集上采样。在这个过程中,测试误差期望会大于或等于训练误差期望。以下是决定机器学习算法效果是否好的因素: 1. 降低训练误差
1999)。核机器的一个主要缺点是计算决策函数的成本关于训练样本的数目是线性的。因为第 i 个样本贡献 αik(x, x(i)) 到决策函数。支持向量机能够通过学习主要包含零的向量 α,以缓和这个缺点。那么判断新样本的类别仅需要计算非零 αi 对应的训练样本的核函数。这些训练样本被称为支持向量 (support
的已知知识表示成先验概率分布 (prior probability distribution),p(θ)(有时简单地称为 “先验”)。一般而言,机器学习实践者会选择一个相当宽泛的(即,高熵的)先验分布,反映在观测到任何数据前参数 θ 的高度不确定性。例如,我们可能会假设先验 θ 在有限区间中均匀分布。许多先验偏好于“更简单”
深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。
深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习的一个分支领域,其源于人工 神经网络的研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial
经网络的基本结构和原理对于深度学习的学习非常重要。 推荐教程: 《神经网络与深度学习》(Neural Networks and Deep Learning)(英)Michael Nielsen 著 三、进阶学习 1.深度学习模型 深度学习模型是深度学习中的核心,包括卷积神经网络、
每个 maxout 单元现在由 k 个权重向量来参数化,而不仅仅是一个,所以 maxout单元通常比整流线性单元需要更多的正则化。如果训练集很大并且每个单元的块数保持很低的话,它们可以在没有正则化的情况下工作得不错 (Cai et al., 2013)。maxout 单元还有一些
使用Dropout训练时的随机性不是这个方法成功的必要条件。它仅仅是近似所有子模型总和的一个方法。Wang and Manning (2013) 导出了近似这种边缘分布的解析解。他们的近似被称为快速 Dropout(fast dropout),减小梯度计算中的随机性而获得更快的收
L2惩罚法也是一个经典的正则化方法。 它是在原有损失函数的基础上,在构造一个新的损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型的预测准确度,思想就是, 先训练大量结构不同的模型,通过平均、或投票方式综合所有模型的结构,得到最终预测。在实际中,有较大限制,原因很简单,
关于聚类的一个问题是聚类问题本身是病态的。这是说没有单一的标准去度量聚类的数据对应真实世界有多好。我们可以度量聚类的性质,例如每个聚类的元素到该类中心点的平均欧几里得距离。这使我们可以判断能够多好地从聚类分配中重建训练数据。然而我们不知道聚类的性质多好地对应于真实世界的性质。此外
神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate
下面用之前的广告数据,来建立线性回归模型,看看tensorflow2的一般建模过程。import numpy as np #1. 数据预处理:装载广告数据 def loadDataSet(): x=[];y=[] f=open('./Ad.csv')
解决欠拟合问题的方法比较简单,增加模型复杂度就可以了。常见的方法是增加隐藏层的数量或者增加隐藏层的节点数,或者二者同时增加。如果训练误差持续下降,接近于0。而测试误差在下降后变得平稳,甚至略有上升。训练误差和测试误差的差距较大。这就是典型的过拟合情况。在建立神经网络模型的初始阶段
线性回归模型相当于下面的简单神经网络模型,它没有隐藏层、输出层只有1个节点,激活函数是线性函数。使用 tf.keras.models.Sequential()构建模型使用 model.compile() 设置优化方法、损失函数、评价指标 (损失函数的值即 训练误差;评价指标的值即