Spark简介

Spark是基于内存的分布式计算框架。在迭代计算的场景下,数据处理过程中的数据可以存储在内存中,提供了比MapReduce高10到100倍的计算能力。Spark可以使用HDFS作为底层存储,使用户能够快速地从MapReduce切换到Spark计算平台上去。Spark提供一站式数据分析能力,包括小批量流式处理、离线批处理、SQL查询、数据挖掘等,用户可以在同一个应用中无缝结合使用这些能力。

Spark的特点如下:

  • 通过分布式内存计算和DAG(无回路有向图)执行引擎提升数据处理能力,比MapReduce性能高10倍到100倍。
  • 提供多种语言开发接口(Scala/Java/Python),并且提供几十种高度抽象算子,可以很方便构建分布式的数据处理应用。
  • 结合SQL、Streaming等形成数据处理栈,提供一站式数据处理能力。
  • 支持契合Hadoop生态环境,Spark应用可以运行在Standalone、Mesos或者YARN上,能够接入HDFS、HBase、Hive等多种数据源,支持MapReduce程序平滑转接。

Spark结构介绍

模块名称
描述

Cluster Manager

集群管理器,管理集群中的资源。Spark支持多种集群管理器,Spark自带的Standalone集群管理器、Mesos或YARN。Spark集群默认采用YARN模式。

Application

Spark应用,由一个Driver Program和多个Executor组成。

Deploy Mode

部署模式,分为cluster和client模式。cluster模式下,Driver会在集群内的节点运行;而在client模式下,Driver在客户端运行(集群外)。

Driver Program

是Spark应用程序的主进程,运行Application的main()函数并创建SparkContext。负责应用程序的解析、生成Stage并调度Task到Executor上。通常SparkContext代表Driver Program。

Executor

在Work Node上启动的进程,用来执行Task,管理并处理应用中使用到的数据。一个Spark应用一般包含多个Executor,每个Executor接收Driver的命令,并执行一到多个Task。

Worker Node

集群中负责启动并管理Executor以及资源的节点。

Job

一个Action算子(比如collect算子)对应一个Job,由并行计算的多个Task组成。

Stage

每个Job由多个Stage组成,每个Stage是一个Task集合,由DAG分割而成。

Task

承载业务逻辑的运算单元,是Spark平台上可执行的最小工作单元。一个应用根据执行计划以及计算量分为多个Task。

Spark原理及相关介绍

Spark原理

Spark的应用运行结构如下图。

运行流程如下:

1、应用程序(Application)是作为一个进程的集合运行在集群上的,由Driver进行协调。

2、在运行一个应用时,Driver会去连接集群管理器(Standalone、Mesos、YARN)申请运行Executor资源,并启动ExecutorBackend。然后由集群管理器在不同的应用之间调度资源。Driver同时会启动应用程序DAG调度、Stage划分、Task生成。

3、然后Spark会把应用的代码(传递给SparkContext的JAR或者Python定义的代码)发送到Executor上。

4、所有的Task执行完成后,用户的应用程序运行结束。

Spark Streaming

Spark Streaming是一种构建在Spark上的实时计算框架,扩展了Spark处理大规模流式数据的能力。当前Spark支持两种数据处理方式:Direct Streaming和Receiver方式。

SparkSQL和DataSet

SparkSQL是Spark中用于结构化数据处理的模块。在Spark应用中,可以无缝地使用SQL语句亦或是DataSet API对结构化数据进行查询。

SparkSQL以及DataSet还提供了一种通用的访问多数据源的方式,可访问的数据源包括Hive、CSV、Parquet、ORC、JSON和JDBC数据源,这些不同的数据源之间也可以实现互相操作。SparkSQL复用了Hive的前端处理逻辑和元数据处理模块,使用SparkSQL可以直接对已有的Hive数据进行查询。

另外,SparkSQL还提供了诸如API、CLI、JDBC等诸多接口,对客户端提供多样接入形式。

SparkSession

SparkSession是Spark编程的统一API,也可看作是读取数据的统一入口。SparkSession提供了一个统一的入口点来执行以前分散在多个类中的许多操作,并且还为那些较旧的类提供了访问器方法,以实现最大的兼容性。

Structured Streaming

Structured Streaming是构建在Spark SQL引擎上的流式数据处理引擎,用户可以使用Scala、Java、Python或R中的Dataset/DataFrame API进行流数据聚合运算、按事件时间窗口计算、流流Join等操作。当流数据连续不断的产生时,Spark SQL将会增量的、持续不断的处理这些数据并将结果更新到结果集中。同时,系统通过checkpoint和Write Ahead Logs确保端到端的完全一次性容错保证。

Structured Streaming的核心是将流式的数据看成一张不断增加的数据库表,这种流式的数据处理模型类似于数据块处理模型,可以把静态数据库表的一些查询操作应用在流式计算中,Spark执行标准的SQL查询,从不断增加的无边界表中获取数据。

Spark与其他组件的关系

  • Spark和HDFS的配合关系

    通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。

    分解来看,Spark分成控制端(Driver)和执行端(Executor)。控制端负责任务调度,执行端负责任务执行。

    通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。

    分解来看,Spark分成控制端(Driver)和执行端(Executor)。控制端负责任务调度,执行端负责任务执行。

  • Spark和YARN的配合关系

    Spark的计算调度方式,可以通过YARN的模式实现。Spark共享YARN集群提供丰富的计算资源,将任务分布式的运行起来。Spark on YARN分两种模式:YARN Cluster和YARN Client。

    Spark的计算调度方式,可以通过YARN的模式实现。Spark共享YARN集群提供丰富的计算资源,将任务分布式的运行起来。Spark on YARN分两种模式:YARN Cluster和YARN Client。

华为云MRS Spark基于开源Spark做了哪些特性增强?

华为云MRS Spark基于开源Spark做了哪些特性增强?

  • CarbonData

    CarbonData是一种新型的Apache Hadoop本地文件格式,使用先进的列式存储、索引、压缩和编码技术,以提高计算效率,有助于加速超过PB数量级的数据查询,可用于更快的交互查询。同时,CarbonData也是一种将数据源与Spark集成的高性能分析引擎。

    图1 CarbonData基本结构

    使用CarbonData的目的是对大数据即席查询提供超快速响应。

    CarbonData将数据源集成到Spark生态系统,用户可使用Spark SQL执行数据查询和分析。也可以使用Spark提供的第三方工具JDBCServer连接到Spark SQL。

    CarbonData特性

    SQL功能:CarbonData与Spark SQL完全兼容,支持所有可以直接在Spark SQL上运行的SQL查询操作。

    简单的Table数据集定义:CarbonData支持易于使用的DDL(数据定义语言)语句来定义和创建数据集。CarbonData DDL十分灵活、易于使用,并且足够强大,可以定义复杂类型的Table。

    便捷的数据管理:CarbonData为数据加载和维护提供多种数据管理功能。CarbonData支持加载历史数据以及增量加载新数据。加载的数据可以基于加载时间进行删除,也可以撤销特定的数据加载操作。

    CarbonData文件格式是HDFS中的列式存储格式。该格式具有许多新型列存储文件的特性,例如,分割表,数据压缩等。

    CarbonData关键技术和优势

    快速查询响应:高性能查询是CarbonData关键技术的优势之一。CarbonData查询速度大约是Spark SQL查询的10倍。CarbonData使用的专用数据格式围绕高性能查询进行设计,其中包括多种索引技术、全局字典编码和多次的Push down优化,从而对TB级数据查询进行最快响应。

    高效率数据压缩:CarbonData使用轻量级压缩和重量级压缩的组合压缩算法压缩数据,可以减少60%~80%数据存储空间,很大程度上节省硬件存储成本。

    CarbonData索引缓存服务器

    为了解决日益增长的数据量给driver带来的压力与出现的各种问题,现引入单独的索引缓存服务器,将索引从Carbon查询的Spark应用侧剥离。所有的索引内容全部由索引缓存服务器管理,Spark应用通过RPC方式获取需要的索引数据。这样,释放了大量的业务侧的内存,使得业务不会受集群规模影响而性能或者功能出现问题。

  • 跨源复杂数据的SQL查询优化

    出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临以下困境:数据源种类繁多,数据集结构化混合,相关数据存放分散等,这就导致了跨源复杂查询因传输效率低,耗时长。

    当前开源Spark在跨源查询时,只能对简单的filter进行下推,因此造成大量不必要的数据传输,影响SQL引擎性能。针对下推能力进行增强,当前对aggregate、复杂projection、复杂predicate均可以下推到数据源,尽量减少不必要数据的传输,提升查询性能。

    目前仅支持JDBC数据源的查询下推,支持的下推模块有aggregate、projection、predicate、aggregate over inner join、aggregate over union all等。为应对不同应用场景的特殊需求,对所有下推模块设计开关功能,用户可以自行配置是否应用上述查询下推的增强。