工作负载弹性伸缩
HPA(Horizontal Pod Autoscaler)
HPA是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。
HPA可以配置单个和多个度量指标,配置单个度量指标时,只需要对Pod的当前度量数据求和,除以期望目标值,然后向上取整,就能得到期望的副本数。例如有一个Deployment控制有3个Pod,每个Pod的CPU使用率是70%、50%、90%,而HPA中配置的期望值是50%,计算期望副本数=(70 + 50 + 90)/50 = 4.2,向上取整得到5,即期望副本数就是5。
节点弹性伸缩
CA(Autoscaler)
HPA是针对Pod级别的,但是如果集群的资源不够了,那就只能对节点进行扩容了。集群节点的弹性伸缩本来是一件非常麻烦的事情,但是好在现在的集群大多都是构建在云上,云上可以直接调用接口添加删除节点,这就使得集群节点弹性伸缩变得非常方便。
通常情况下,需要HPA(Horizontal Pod Autoscaling)和CA(Cluster AutoScaling)配合使用,因为HPA需要集群有足够的资源才能扩容成功,当集群资源不够时需要CA扩容节点,使得集群有足够资源;而当HPA缩容后集群会有大量空余资源,这时需要CA缩容节点释放资源,才不至于造成浪费。